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1 Linear spaces and Linear operators

1.1 Linear spaces

Definition 1 (1.1) Let X be a set and K = R or C. Assume that X is provided with two
operations: addition and scalar multiplication, i.e., mappings from X x X to X and K x X
to X, denoted by

(x,y) —z+y, Nzx)—Ax, z,yeX, IeK

respectively. Then X is said to be linear space over K if for all x,y,z € X and \,u € K the
following axioms are satisfied:

(1) z+y=y+uw;

(2) (x+y)+z=z+{y+2);

(3) there exists an element 0 € X such that x + 0 = x;

(4) There exists an element —x € X such that x + (—z) = 0;
(5) Mupx) = (Aw)x;

(6) 1lx = z;

(7) Mz +y) = Ae+ \y;

(8) (A+ p)x+ Az + px

A subset V' of a linear space X is called a linear subspace when it is a linear space itself with
the given operations.

Remark: Note that in this course we often refer K to be either R or C.

Examples:

F(S,K)y={f:5—>K} C(SK)={f:]a,b] > K: f is continuous}

o
1° ={(z1,22,...) : & € K, sup |z;| < oo} P ={(x1,22,...): 7; €K, Z |zi|P < oo}
ieN P

Definition 2 (1.5) Let X be a linear space. The sum of two linear subspaces V,\W C X is
defied as
V4+W={e+y:zeV,yecW}

the sum is called direct if V NW = {0}
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1.2 Linear operators

Definition 3 (Linear mapping) Let X and Y be linear spaces over K. A mapping T :
X =Y is called linear if

e domT =X
e I'(x+y)=Tx+Ty
o T(A\x) = \Tx)

for all x,y € X and A € K. The collection of all linear mappings from X to'Y is denoted by
L(X,Y)

Remark: Note that a linear map 7" : X — Y is injective iff ker 7" = {0} and is surjective
iff ranT =Y

Definition 4 (Projection) Let X be a linear space and P : X — X be a linear mapping.
Then P is called projection if P2 = P.

Lemma 5 (1.13) A linear mapping P : X — X s a projection if and only if I — P is a
projection. In this case:

ran P = ker(I — P), ker P =ran(l — P)

Moreover, X =ran P 4 ker P is a direct sum.

1.3 Quotient spaces of linear spaces

Definition 6 A relation ~ on a set X is called an equivalence relation if
1. reflexive: for each x € X one has x ~ x
2. symmetric: if x ~ vy, theny ~ x
3. transitive: (x ~y Ny~ z), then x ~ z
Moreover, for x € X the equivalence class [z] of x is defined as
[z]={ye X:z~y}

Definition 7 (Quotient set) The set of all equivalence classes in X is denoted by X/ ~
(quotient set), and the mapping m : X — X/ ~ given by x — [z] is called the natural mapping

Theorem 8 (1.18) Let X be a set with an equivalence relation ~. Let x,y € X, then one
has the following statements:

1. x € [z]

3. [l N[yl # 0 = [z] = [y]

4. X = Ugex(z], the disjoint union of equivalence classes
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Definition 9 Let X be a linear space and let V- C X be a linear subspace. Then V' induces
an equivalence relation on X by
r~y&Sr—yeV

The equivalence class to which x € X belongs is denoted by x +V
r+V={yeX:z—yeV}
The set of equivalence classes is denoted by X/V

Definition 10 Let X be a linear space and let V. C X be a linear subspace. The natural
mapping 7 : X — X/V is defined by

m(x)=x+4+V, ze€X

moreover, the mapping 7 is linear, subjective and kerm =V

1.4 Isomorphisms between linear spaces

Theorem 11 (Isomorphism Theorem) let X,Y be linear spaces and let T € L(X;Y).
Then, the map T : X/kerT — Y, given by

is well defined, linear and injective. As consequence, the spaces X/kerT and ranT are iso-
morphic. If in addition, T is surjective, T' : X/ker(T) — Y is an isomorphism of linear
spaces.

Theorem 12 Let X be a linear space with V- C X a linear subspace. If dim X < oo, then
dim X/V < oo and
dim X/V =dim X — dimV

Corollary 13 Let T : X — Y be a linear map with dim X < oco. Then

dimkerT +dimranT = dim X

1.5 Dual spaces of linear spaces

Definition 14 Let X be a linear space over K. The dual space of X (algebraic dual) is
defined as X' = L(X,K). The elements of X' called functionals on X

Lemma 15 Let X be a finite-dimensional linear space. Then X' is a finite-dimensional
linear space and dim X’ = dim X

Definition 16 (Bidual) Let X be a linear space over K. The second-dual space of X is
defined as X? = L(X',K). The natural mapping J : X — X7 is given by

J@)(f)=f(z), zeX, feX

Lemma 17 Let X be a finite-dimensional linear space. Then J is a bijection between X and
X??
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2 Normed linear spaces and inner product spaces

2.1 Linear spaces with a norm

Definition 18 Let X be a linear space over K = R or C. The mapping || - || : X — R is
called norm if for all x,y € X and A € K the following axioms are satisfied:

1. |lz|| >0

2. |z||=0<2=0

3. [[Az[| = [Alll=|

4- Mz +yll < [zl + [yl

The pair (X, - ||) is called a normed linear over K. By abuse of language X itself will often
be called a normed linear space. If in (2) only the implication (<) holds, then ||- is called a
semi-norm and X s called a semi-normed linear space over K.

Proposition 19 (Reverse Triangle Inequality) For all x,y € X, we have |||z| — ||y||| <
[l =y

Proposition 20 The expression d(z,y) = ||z — yl| defines a metric on X, and the function
d is continuous on X x X.

Remark: This metric induce a natural topology, which we call the strong topology
and is generated by the open balls

B(zg,e) ={ye X :|ly — x| <€}, forzpe X ande>0

Proposition 21 (Young’s inequality) For a,b > 0, we have

a? bl
ab< — + —
b q

Proposition 22 (Holder’s inequality) For z € K" and let 1/p+1/q =1, where 1 < p <

o0, we have
n n 1/1” n 1/q
S ol < (zw) (zw)
i=1 i=1 i=1

Proposition 23 (Minkowski’s Inequality) For z € K" and let 1 < p < oo, we have

n 1/p n 1/p n 1/p

(Sicrur) = () (Sme)

i=1 i=1 i=1

Definition 24 A sequence (x,,) in a normed space X converges to x € X if
|zn —z|]| -0 asn— o0
In other words, for every € > 0, there is N € N, such that
[#n — ]| < €

foralln > N
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Proposition 25 If z, — x in X, then ||z,|| — ||z|| in R. As a consequence, convergent
sequences are bounded.

Proposition 26 (Topological vector spaces) The sum and the multiplication by a scalar
are continuous functions. More precisely, if x, — x in X, yp — vy in X and Ay, = X in K,
then

Tn+Yn —+y and Axy, — AT

i X. Normed spaces are topological vector spaces

Definition 27 (distance) Let X be a normed space. The distance between a point x € X
and a set S C X is

d(z,S) = inf{[lz —y[| : y € S}
It is a continuous function on X
Definition 28 The closure of S C X, where X is a normed space is
S:={reX:dS) =0}
Proposition 29 o A point x € X is in S if, and only if, a sequence in S converges to
o A set S C X is closed if, and only if, S =S (or S C S)
o IfV is a closed subspace, then ||[z]| := d(z,V) is a norm in X/V

e FEwery subspace of finite dimension is closed
Definition 30 Two norms || - ||1 and || - ||2 on X are equivalent if there exist m, M > 0 such

that
mllzllr < [lzllz < Mllz[

forallxe X

Proposition 31 Equivalent norms induce the same topology: they have the same open sets
and the same convergent sequences.

Theorem 32 If dim X < oo, all norms on X are equivalent
Remark: This is not true in infinite-dimensional spaces!
Theorem 33 The closed unit ball in a normed space X is compact if and only if dim X < oo

Lemma 34 (Riesz’s Lemma) Let V be a closed linear subspace of a normed space X with
V # X and let 0 < A < 1. Then, there is xx € X such that ||zx|| =1 and ||z)x —v|| > X for
allveV.
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3 Banach spaces

3.1 Banach spaces

Definition 35 A sequence (xy), in a normed space X, has the Cauchy property (or is a
Cauchy sequence) if
|Zn —Zm|] =0 as n,m— o0

More precisely, for every € > 0, there is N € N such that ||z, — x| < € for all n,m > N
Proposition 36 Every convergent sequence has the Cauchy property

Proposition 37 Every Cauchy sequence is bounded and has, at most, one limit point
Proposition 38 A Cauchy sequence with a convergent subsequence must be convergent.

Definition 39 A normed linear space (X,|| -||) is called complete if every Cauchy sequence
i X converges in X

Definition 40 (Banach Space) A Banach space is a normed space in which every Cauchy
sequence is convergent

Proposition 41 Let X be a finite-dimensional normed linear space. Then X is a Banach
space

Proposition 42 Let V be a subspace of a normed space X. We have the following:

1. If X is a Banach space and V is closed, then V is a Banach space
2. If V is a Banach space, then V is closed in X

Theorem 43 Let X be a normed space. The following are equivalent:
e X is a Banach space

o FEvery absolutely convergent series is convergent

Theorem 44 If V is a closed subspace of a Banach space X, then the quotient space X/V
is a Banach space

Theorem 45 For each normed space X there exist a Banach space X and a linear isometry
t: X = X such that (X) =X

4 Baire’s Theorem, Bounded Linear Operators and Uniform
Boundedness Principle, Open Mapping Theorem

Theorem 46 (Open Mapping Theorem) Let X andY be Banach spaces. If T € L(X,Y)
18 bounded and surjective, then T is open: it maps open subsets of X to open subsets of Y

Theorem 47 (Bounded Inverse Theorem) Let X and Y be Banach spaces, let T €
L(X,Y) be bounded and bijective. Then T~ is bounded
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Theorem 48 (Closed Range Theorem) Let X and Y be Banach spaces, and let T €
L(X,Y) be bounded. The following statements are equivalent:

1. There is ¢ > 0 such that |T'z| > c||z|| for allz € X;

2. T is injective and ran(T) is closed in'Y

Theorem 49 (Equivalence of Banach Norms) Let || - ||1 and || - ||2 be two norms on a
linear space X, both of which make X a Banach space. Assume there is a constant C > 0
such that

[zlla < Cllzlx

for all x € X. Then, there is a constant C' > 0 such that
lz1]| < C7llz (|2
for all x € X. As a consequence, the two norms are equivalent

Definition 50 Let X and Y be normed spaces, and let V' be a closed subspace of X. An
operator T € L(V,Y') is closed if its graph

GT)={(z,Tx): x €V}
is closed subset of X XY

Theorem 51 (Closed Graph Theorem) Let X andY be normed spaces, let V' be a closed
subspace of X

1. If T € L(V,Y) is bounded, it is closed
2. If X and Y are Banach spaces and T € L(V,Y) is closed, then T is bounded

Definition 52 (Bounded projection) Let V and W be closed linear subspaces of a Banach
space X. Assume
X=V+W with VnNnW={0}

so that each x € X is uniquely written as * = v+ w, with v € V and w € W. Define the
projection operator P : X — X by Px = v, for each x € V.. Then P is bounded.

Theorem 53 Let T be a bounded linear operator on a Banach space X. If |T|| < 1, then
I-T is invertible: there is a bounded linear operator S on X such that S(I-T) = (I-T)S =1

5 Hahn-Banach Theorem(s)

Definition 54 Given a linear space X, its algebraic dual is the space X' = L(X,K).
Definition 55 Given a normed space X, its topological dual is the space X* = L(X,K)

Remark: Its elements are bounded linear functionals on X.
Remark: Since K € {C,R}, X* is always a Banach space, even if X is not.

Remark: Let || - ||« be the norm on X*
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Definition 56 The bilinear function (-,-) : X* x X — K, defined by (L,x) = L(x) is the
duality product between X and X*. If the spaces are not clear from the context, we write
<L’ $>X* X

Theorem 57 (Hahn-Banach Separation Theorem) Let A and B be nonemprty, disjoint
convex subsets of a normed space X.

o If A is open, there exists L € X*\{0} such that (L,x) < (L,y) for each x € A and
yeB

o If A is compact and B is closed, there exist L € X*\{0}, and € > 0 such that (L,z)+e <
(L,y) for each x € A and y € B

Proposition 58 Given N > 1, let C be a nonempty and convex subset of RN not containing
the origin. Then, there exists v € RN\{0} such that v-z < 0 for each x € C. In particular,
if N > 2 and C is open, then

V={zecR" :v.z=0}
is a nontrivial subspace of RV that does not intersect C

Corollary 59 (of HBST) For each x € X, there is I, € X* such that ||lz|« = 1 and
(I, ) = ||z||. We say l; is a support functional at x

Corollary 60 For every v € X, || = max) ), - (L, )

Theorem 61 (Hahn-Banach Extension Theorem) Let V' be a subspace of X and let
L € V* with ||l||y+ < o, with o > 0. Then, there exists L € X* such that

o L coincides withl on'V
o [Lfx+ <«

Theorem 62 Let X be a normed linear space, let V. C X be a linear subspace, and let
xo € X. Assume that

§ =d(zo,V) =inf{|lxzog—v|]:veV} >0
Then there exists F' € X* such that
F(zg)=06, F[IV =0, and]|F|=1
Corollary 63 everyl € V* is the restriction to V' of some L € X*
Corollary 64 if xo ¢ V, there exists L € X* such that L =0 on V and (L,zo) =1

Definition 65 (Duality mapping) The (normalized) duality mapping is the set-valued func-
tion F : X — P(X*) given by

Fl@)={z" € X*: [a"lls = 1 and (") = ||z]}

The set F(x) is always convex, but it need not be a singleton
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Definition 66 (Bidual) The bidual of X is the dual of X* : X** = L(X* K)

Definition 67 (Evaluation functional) For each x € X, we define the evaluation func-
tional py : X — R by

pra(L) = (L, )
for each L € X*

Proposition 68 For each x € X and L € X*, we have py € X** and || iz ||+ < ||2||

Definition 69 The linear function J : X — X**, defined by J(x) = g, is the canonical
embedding of X into X**

Proposition 70 The canonical embedding J : X — X** is an isometry.

Definition 71 The space X is reflexive if J is surjective: if every element p of X** is of
the form p = p, for some x € X

Remark: Every reflexive space is a Banach space
Proposition 72 A Banach space X is reflexive if, and only if, X™* is reflexive
Proposition 73 If V is a closed subspace of a reflexive space X, then V is reflexive
Definition 74 A subspace E of a normed space X is dense if E = X

Definition 75 (Separable) A normed space X is separable if it contains a countable subset
which is dense in it

Remark: Every finite dimensional normed space is separable.

Remark: The space ™ is separable whenever 1 < p < oo
Theorem 76 If X' is separable, so is X

Corollary 77 X is separable and reflexive if, and only if, X' is separable and reflexive.
Finite dimensional spaces are separable and reflexive

6 Weak Topology

Definition 78 (Neighborhood) A neighborhood of x € X is a set N C X such that there
is O € T with
recOCN

The collection of all neighborhoods of x € X is denoted by N(x), where we omit the T if it
is either clear from the context or not relevant.

Theorem 79 A set S is open if, and only if, S € N(z) for allx € S (it is a neighborhood of
each of its points)
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Definition 80 Let 71 and T3 be topologies on a set X. If Ti C Ty we say that Ti is coarser
than (or equal to) To and Tz is finer than T

Remark: The intersection of all topologies containing a family S of subsets of X is a
topology. It is the coarsest topology containing S. This topology must also contain the finite
intersections of members of S

Definition 81 (Basis for a topology) A basis for the topology T is a subset B of T such
that for every x € X and every N € N (x), there is B € B satisfying

reBCN

Proposition 82 If B is a basis for T, then T is the coarsest topology containing B. There-
fore, bases uniquely determine the topology. The finite intersections of members of S are a
basis for the coarsest topology containing S

Definition 83 (Continuity) Let (X,7T) and (Y,S) be topological spaces. A function f :
X =Y is continuous at a point x € X if f~1(N) € Np(z) for every N € Ns(f(x)). It is

continuous in X if it is so at every x € X.

Definition 84 The weak topology on X is the weakest/coarsest/ fewest open sets topology on
X that makes f € X' continuous.

Remark: The weak topology is the coarsest topology containing the half-spaces.

Definition 85 The finite intersections of half-spaces are a basis for the weak topology.

Definition 86 (Neighborhood basis) For ae >0, z9 € X and f1,..., fn € X’
n
Mo € X file —a0) < &
k=1

Remark: the weak topology is not metrializeble.

Definition 87 A topological space has the Hausdorff property if distinct points admit disjoint
neighborhoods: if x # y, there exists N, € N'(x) and Ny € N (y) such that Ny " Ny = ()

Proposition 88 FEvery normed space with the weak topology has the Hausdorff property.

Definition 89 The weak topology in X' is then the coarsest topology fro which all the elements
of X7 are continuous

Definition 90 The weak® topology in X' is the coarsest topology that makes all the elements
of J(X) C X" continuous. Recall that all the elements of J(X) are the evaluation function-
als.

Theorem 91 (Weierstrass) Let C' be compact, and let f : C — R be continuous. Then, f
attains its minimum and its mazimus on C

Theorem 92 Let X be a Banach space.
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e The closed balls in X' are weak*ly compact (Banach-Alaoglu)

e If X is separable, then the closed balls in X' are also weak*ly sequentially compact,
which means that every bounded sequence has a weak™ly convergent subsequence.

Theorem 93 Let X be a Banach space. The following statements are equivalent:
1. X is reflexive
2. The closed balls in X are weakly compact

3. The closed balls in X are weakly sequentially compact, which means that every bounded
sequence has a weakly convergent subsequence

6.1 some application

Theorem 94 Let X be reflexive, and let f : X — R be a continuous convex function such
that im0 f(2) = 00. Then, f attains its minimum.
7 Hilbert spaces

Definition 95 (Inner product) An inner product in a vector space H is a function (-,-) :
H x H — K such that

1. (x,z) > 0 for every x # 0
2. (x,y) = (y,z) for each z,y € H
3. {ax+y,z) =alx,z)+ (y,z) for each o € K and x,y,z € H

Remark: (z,ay + z) =a (z,y) + (z,2) for each « € K and z,y,z € H
Definition 96 The function || - || : H — R, defined by ||z|| = \/{z, ), is a norm on H.
Proposition 97 For each x,y € H we have

e The Cauchy-Schwarz inequality: | (z,y)| < |z|/|yll

e Triangle inequality: ||x + y|| < ||z| + ||y]|
Definition 98 Given y € H, define a function L, : H — K by Ly(h) = (h,y)
Proposition 99 The function £ : H — H*, defined by L(y) = Ly, is an isometry

Proposition 100 Let (z,,) and (yn) be sequences in H. If x, — = and y, — y, then

Jim. (T, yn) = (x,V)

Definition 101 We say x,y are orthogonal, and write x L y, if (x,y) =0

Theorem 102 (Pythagoras) If x Ly, then ||z +y|® = ||z + ||ly||?
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Proposition 103 (Parallelogram identity) For each x,y € H, we have ||z + y||?> + ||z —
yl? = 2(ll=l* + llylI*)

Definition 104 If ||z|| = \/(z,z) for all v € X, we say that the norm || - || is associated to
the inner product (-, -)

Definition 105 (Hilbert space) A Hilbert space is a Banach space, whose norm is associ-
ated to an inner product

7.1 Orthogonal projection

Proposition 106 Let K be a nonempty, closed and convex subset of H and let x € H. Then,
there exists a unique y* € K such that

lz = 37l = min [lz — |
Moreover, it is the only element of K such that
(r—y"y—y) <0 Wek
Remark: The point y* is the projection of z onto K and will be denoted by Pk (x)

Proposition 107 Let K be a nonempty, closed and convex subset of H. The function x —
Pr(x) is non-expansive

Proposition 108 If M is closed subspace of H, then x — Py;(x) L M for each x € H

7.2 Representation Theorem

Recall that each y € H defines L, € H* by Ly(h) = (h,y), moreover || L,|. = ||yl|

Theorem 109 (Riesz-Frechet) For each L € H*, there is a unique yr, € H such that
L(h) = (yL, h)

for each h € H. Therefore, the function L — yr, is an isometric isomorphism.

Corollary 110 The inner product (-,-), : H* x H* — K, defined by

(L1, L2), = L1(yr,) = (Yr1> Y1)

turns H* into a Hilbert space, which is isometrically isomorphic to H. The norm associated
with (-,-), 1is precisely || - ||«

*

Corollary 111 Hilbert spaces are reflexive

Remark: A sequence (z,) on a Hilbert space H converges weakly to x € H if, and only
if, limy, o0 (zp, —z,y) =0 for ally € H

Proposition 112 A sequence in (x,) converges strongly to x if, and only if, it converges
weakly to x and limy,_, o sup ||z, | < [|z]]
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7.3 Orthonormalization

Definition 113 (Orthonormal sets) A set {e;}icr in a linear space H with an inner prod-
uct is orthonormal if

o |le;l| =1 forallie I; and
o (e;,ej) =0, whenever i # j
Remark: Every finite subset of an orthonormal set is linearly independent

Proposition 114 Let {ei,...,en} be an orthonormal set in a linear space H with an inner
product, and let V = span{ey,...,e,}. Then, for every x € H

n

Py(z) = Z (x,e;)e;

=1

Proposition 115 (Gram-Schmidt) Given a linearly independent set {ax, ..., a,} in a linear
space H with an inner product, there is an orthonormal set {e1, ...,e,} such that

span{ey, ..., e, } = spanf{ay, ..., ai }
forallk e {1,...,n}

Procedure: (also for the proof)

1. Define

note that if n = 1, then the Gram-Schmidt is indeed true, span{e;} = span{a, }.
2. if n > 1, then define recursively

bn+1

Hb +1H 9 bn+1 — an+1 - PVn(an+1)
n

En+1 =

where V,, = span{ey, ..., e, } = span{ay, ..., a,}
3. The vectors {ey, ..., en41} are orthonormal and span{e, ..., e,+1} = span{ai, ..., ant1}

Proposition 116 Let {e;};cn be an orthonormal set in a linear space H with an inner prod-
uct. Then, for every x € H,

o0
> e [* < lz)?

=1

Proposition 117 Let {e;}icn be an orthonormal set in Hilbert space H. The series y .o Aie;
is convergent if, and only if, Y o0, |Ni|* < 0o. In such case,

[e.o] 2 o0
el =3 h
=1 =1
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Definition 118 An orthonormal set {e;}icn is an orthonormal basis for a Hilbert space H if
span{e; }ien = H
Theorem 119 A Hilbert space is separable if, and only if, it has an orthonormal basis

Theorem 120 The following statements about orthonormal set {e;};cn in a Hilbert space H
are equivalent:

1. {ei}tien is an orthonormal basis for H
2 Aeibien = {0}
3. For eachx € H, Y ;2 (x,e;)e; =x

4. For each x € H, > 72, | (x, e;) 2 = =|?

8 Adjoint operators

Definition 121 Let X and Y be Hilbert spaces, and let T € B(X,Y). The adjoint of T is
the bounded linear operator T* € B(Y, X) satisfying

(Tz,y) = (2, T"y)
forallzre X andyeY

Theorem 122 The adjoint of L is well defined, unique, and has the following properties:
1. (T**=T
2. [T = T
3.7 T| = ||T|]?

Remark: If T is a matrix, then T = T

Proposition 123 Let X,Y and Z be Hilbert spaces. We have the following
o IfT.S € B(X,Y) and \, u € K, then (AT + uS)* = A\T* + 1S*

e IfTeB(X,Y)and S € B(Y,Z), then (ST)* =T*S*
Proposition 124 Let T be invertible. Then, T* is invertible and (T*)~! = (T—1)*

Lemma 125 For T € B(X,Y) and A € K we have

(ran(T — \)* = ker(T* —=X) C Y
(ran(T* — X))t = ker(T — \) ¢ X
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Corollary 126 Given T € B(X) and X € K, we have the following decompositions:

X =ker(T* — X\ @7an(T — \)
X =ker(T — \) @ran(T* — )

where @& denotes a direct sum of orthogonal closed subspaces.
Definition 127 Let X be a Hilbert space. An operator T € B(X) is selfadjoint if T* =T.
Definition 128 Let X be a Hilbert space. An operator T' € B(X) is normal if TT* =T*T
Proposition 129 Let X be a Hilbert space.

o IfT is selfadjoint, it is normal

e IfT € B(X) is normal, then

— || T*z|| = |Tz|| for allz € X
— ker(T — \) = ker(T* — X\) for all A € K

Definition 130 Let X be a Hilbert space. An operator P € B(X) is an orthogonal projection
if:

e P2=P

e ker P | ran P

Proposition 131 A projection P in a Hilbert space H is orthogonal if, and only if, it is
selfadjoint
9 Eigenvalues, Eigenvectors of linear operators

Definition 132 Let X be a Banach space, and let T € B(X). A scalar A € K is an eigenvalue
of T if there is x # 0 such that
Tx =Xz

The space ker(T'—\) is the associated eigenspace, and its nonzero elements are the eigenvectors

of T
Proposition 133 ) is an eigenvalue of T if, and only if, X is an eigenvalue of T*.

Proposition 134 If H is a Hilbert space and T € B(H) is normal, then the eigenspaces
corresponding to distinct eigenvalues are orthogonal to each other.

Definition 135 Let X be a Banach space and let T € B(X). The resolvent set of T' is
p(T)={NeK:(T-)N"'eB(X)}

The resolvent operator of T with index X € p(T) is R(\) = (T — \)~*
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Definition 136 Let X be a Banach space and let T € B(X). The spectrum of T is o(T') =
K\p(T)

Remark: p(T*) = p(T) and o(T*) = o(T)

Proposition 137 Let X be a Banach space, and let T € B(X). If X € o(T), then |A| < ||T.
In turn, if [\| > ||T||, then A € p(T') and

n

R(/\) - Z A\n+1
n=0

Proposition 138 Let H be a Hilbert space, and let T € B(H) be normal. Then, A € p(T)
if, and only if, there is ¢ > 0 such that

(T = A)z|| = el|z]

forallx € H
As a consequence, X € o(T) if, and only if, there is a sequence (z,,) such that ||z, | =1 for
all n, and (T — XN)zp, — 0

10 Compact operators

Corollary 139 Let X be a Banach space, and let T' € B(X). Then p(T) is open and o(T)
is closed.

Definition 140 Let X and Y be Banach spaces. A linear operator T : X — Y is compact if
T(B) is compact whenever B C X is bounded

Proposition 141 T : X — Y is compact if, and only if, for every bounded sequence (xy),
the sequence (T'xy) has a convergent subsequence

Proposition 142 Compact operators are bounded
Proposition 143 FEvery bounded linear operator with finite rank is compact

Definition 144 Given X and Y Banach, we denote the space of all compact operators from
X toY by K(X,Y)

Proposition 145 K(X,Y) is closed in B(X,Y): Limits of compact operators are compact

Theorem 146 Let X be a Banach space, and let T € K(X)

1. For each € > 0, the number of eigenvalues \ of T with |\| > € is finite. In particular, T
has countably many eigenvalues

2. if X\ #0 is an eigenvalue of T, then dim(ker(T — X)) < oo

3. If dim X = oo, then 0 € o(T)
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10.1 The spectral theorem for compact selfadjoint operators

Proposition 147 Let H be a complex Hilbert space, and let T : H — H be bounded. Then,
T is selfadjoint if, and only if, (Tx,z) € R for all x € H. As a consequence, all eigenvalues
of selfadjoint operator are real

Definition 148 Let H be Hilbert space. A bounded linear operator T : H — H is nonnegative
if (Tz,x) >0 for allx € H. We shall write T > 0

Proposition 149 Let T >0
1. T is selfadjoint
2. |Tz||? < ||T|| (Tx,x) for all x € H
Lemma 150 Let H be a Hilbert space and let T : H — H be bounded and selfadjoint. Define

a:= inf (Txz,z) and b:= sup (Tz,x)
llz|=1 |lz||=1

we have the following
1. T—a>0andb-T >0
2. o(T) C la,b], and a,b € o(T)
3. TN = supyjzj=1 [ (Tx, ) | = max{|al, |b]}

Proposition 151 Let H be a Hilbert space, and letT : H — H be a compact and selfadjoint.
Then, either —||T|| or ||T|| is an eigenvalue of T

Corollary 152 Ifo(T) = {0}, then T =0

Theorem 153 (The spectral theorem) Let H be a separable Hilbert space, and let T :
H — H be compact and selfadjoint. Then, there is an orthonormal basis of H composed
of eigenvectors of T'. More precisely, there exist countably many orthonormal eigenvectors
(en)nen, corresponding to real eigenvalues (Ap)nenr, such that

Ty = Z An (T, en) en

neN

forallx € H. If dim(H) = oo, then N =N and lim;, 00 Ay =0

/faculty of Science and Engineering 17



