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1 Linear spaces and Linear operators

1.1 Linear spaces

Definition 1 (1.1) Let X be a set and K = R or C. Assume that X is provided with two
operations: addition and scalar multiplication, i.e., mappings from X ×X to X and K ×X
to X, denoted by

(x, y) 7→ x+ y, (λ, x) 7→ λx, x, y ∈ X, λ ∈ K

respectively. Then X is said to be linear space over K if for all x, y, z ∈ X and λ, µ ∈ K the
following axioms are satisfied:

(1) x+ y = y + x;

(2) (x+ y) + z = x+ (y + z);

(3) there exists an element 0 ∈ X such that x+ 0 = x;

(4) There exists an element −x ∈ X such that x+ (−x) = 0;

(5) λ(µx) = (λµ)x;

(6) 1x = x;

(7) λ(x+ y) = λx+ λy;

(8) (λ+ µ)x+ λx+ µx

A subset V of a linear space X is called a linear subspace when it is a linear space itself with
the given operations.

Remark: Note that in this course we often refer K to be either R or C.

Examples:

F(S,K) = {f : S → K} C(S,K) = {f : [a, b] → K : f is continuous}

l∞ = {(x1, x2, ...) : xi ∈ K, sup
i∈N

|xi| < ∞} lp = {(x1, x2, ...) : xi ∈ K,

∞∑
i=1

|xi|p < ∞}

Definition 2 (1.5) Let X be a linear space. The sum of two linear subspaces V,W ⊂ X is
defied as

V +W = {x+ y : x ∈ V, y ∈ W}

the sum is called direct if V ∩W = {0}
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1.2 Linear operators

Definition 3 (Linear mapping) Let X and Y be linear spaces over K. A mapping T :
X → Y is called linear if

• domT = X

• T (x+ y) = Tx+ Ty

• T (λx) = λ(Tx)

for all x, y ∈ X and λ ∈ K. The collection of all linear mappings from X to Y is denoted by
L(X,Y )

Remark: Note that a linear map T : X → Y is injective iff kerT = {0} and is surjective
iff ranT = Y

Definition 4 (Projection) Let X be a linear space and P : X → X be a linear mapping.
Then P is called projection if P 2 = P .

Lemma 5 (1.13) A linear mapping P : X → X is a projection if and only if I − P is a
projection. In this case:

ranP = ker(I − P ), kerP = ran(I − P )

Moreover, X = ranP + kerP is a direct sum.

1.3 Quotient spaces of linear spaces

Definition 6 A relation ∼ on a set X is called an equivalence relation if

1. reflexive: for each x ∈ X one has x ∼ x

2. symmetric: if x ∼ y, then y ∼ x

3. transitive: (x ∼ y ∧ y ∼ z), then x ∼ z

Moreover, for x ∈ X the equivalence class [x] of x is defined as

[x] = {y ∈ X : x ∼ y}

Definition 7 (Quotient set) The set of all equivalence classes in X is denoted by X/ ∼
(quotient set), and the mapping π : X → X/ ∼ given by x 7→ [x] is called the natural mapping

Theorem 8 (1.18) Let X be a set with an equivalence relation ∼. Let x, y ∈ X, then one
has the following statements:

1. x ∈ [x]

2. [x] = [y] ⇔ x ∼ y

3. [x] ∩ [y] ̸= ∅ ⇒ [x] = [y]

4. X =
⋃

x∈X [x], the disjoint union of equivalence classes
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Definition 9 Let X be a linear space and let V ⊂ X be a linear subspace. Then V induces
an equivalence relation on X by

x ∼ y ⇔ x− y ∈ V

The equivalence class to which x ∈ X belongs is denoted by x+ V

x+ V = {y ∈ X : x− y ∈ V }

The set of equivalence classes is denoted by X/V

Definition 10 Let X be a linear space and let V ⊂ X be a linear subspace. The natural
mapping π : X → X/V is defined by

π(x) = x+ V, x ∈ X

moreover, the mapping π is linear, subjective and kerπ = V

1.4 Isomorphisms between linear spaces

Theorem 11 (Isomorphism Theorem) let X,Y be linear spaces and let T ∈ L(X;Y ).
Then, the map T̂ : X/ kerT → Y , given by

T̂ ([x]) = T (x)

is well defined, linear and injective. As consequence, the spaces X/ kerT and ranT are iso-
morphic. If in addition, T is surjective, T̂ : X/ ker(T ) → Y is an isomorphism of linear
spaces.

Theorem 12 Let X be a linear space with V ⊂ X a linear subspace. If dimX < ∞, then
dimX/V < ∞ and

dimX/V = dimX − dimV

Corollary 13 Let T : X → Y be a linear map with dimX < ∞. Then

dimkerT + dim ranT = dimX

1.5 Dual spaces of linear spaces

Definition 14 Let X be a linear space over K. The dual space of X (algebraic dual) is
defined as X ′ = L(X,K). The elements of X ′ called functionals on X

Lemma 15 Let X be a finite-dimensional linear space. Then X ′ is a finite-dimensional
linear space and dimX ′ = dimX

Definition 16 (Bidual) Let X be a linear space over K. The second-dual space of X is
defined as X” = L(X ′,K). The natural mapping J : X → X” is given by

J(x)(f) = f(x), x ∈ X, f ∈ X ′

Lemma 17 Let X be a finite-dimensional linear space. Then J is a bijection between X and
X”
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2 Normed linear spaces and inner product spaces

2.1 Linear spaces with a norm

Definition 18 Let X be a linear space over K = R or C. The mapping ∥ · ∥ : X → R is
called norm if for all x, y ∈ X and λ ∈ K the following axioms are satisfied:

1. ∥x∥ ≥ 0

2. ∥x∥ = 0 ⇔ x = 0

3. ∥λx∥ = |λ|∥x∥

4. ∥x+ y∥ ≤ ∥x∥+ ∥y∥

The pair (X, ∥ · ∥) is called a normed linear over K. By abuse of language X itself will often
be called a normed linear space. If in (2) only the implication (⇐) holds, then ∥· is called a
semi-norm and X is called a semi-normed linear space over K.

Proposition 19 (Reverse Triangle Inequality) For all x, y ∈ X, we have |∥x∥ − ∥y∥| ≤
∥x− y∥

Proposition 20 The expression d(x, y) = ∥x − y∥ defines a metric on X, and the function
d is continuous on X ×X.

Remark: This metric induce a natural topology, which we call the strong topology
and is generated by the open balls

B(x0, ϵ) = {y ∈ X : ∥y − x0∥ < ϵ}, for x0 ∈ X and ϵ > 0

Proposition 21 (Young’s inequality) For a, b ≥ 0, we have

ab ≤ ap

p
+

bq

q

Proposition 22 (Holder’s inequality) For x ∈ Kn and let 1/p+ 1/q = 1, where 1 < p <
∞, we have

n∑
i=1

|xiyi| ≤

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

Proposition 23 (Minkowski’s Inequality) For x ∈ Kn and let 1 ≤ p < ∞, we have(
n∑

i=1

|xi + yi|p
)1/p

≤

(
n∑

i=1

|xi|p
)1/p

+

(
n∑

i=1

|yi|p
)1/p

Definition 24 A sequence (xn) in a normed space X converges to x ∈ X if

∥xn − x∥ → 0 as n → ∞

In other words, for every ϵ > 0, there is N ∈ N, such that

∥xn − x∥ ≤ ϵ

for all n ≥ N
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Proposition 25 If xn → x in X, then ∥xn∥ → ∥x∥ in R. As a consequence, convergent
sequences are bounded.

Proposition 26 (Topological vector spaces) The sum and the multiplication by a scalar
are continuous functions. More precisely, if xn → x in X, yn → y in X and λn → λ in K,
then

xn + yn → x+ y and λnxn → λx

in X. Normed spaces are topological vector spaces

Definition 27 (distance) Let X be a normed space. The distance between a point x ∈ X
and a set S ⊂ X is

d(x, S) = inf{∥x− y∥ : y ∈ S}

It is a continuous function on X

Definition 28 The closure of S ⊂ X, where X is a normed space is

S := {x ∈ X : d(x, S) = 0}

Proposition 29 • A point x ∈ X is in S if, and only if, a sequence in S converges to x

• A set S ⊂ X is closed if, and only if, S = S (or S ⊂ S)

• If V is a closed subspace, then ∥[x]∥ := d(x, V ) is a norm in X/V

• Every subspace of finite dimension is closed

Definition 30 Two norms ∥ · ∥1 and ∥ · ∥2 on X are equivalent if there exist m,M > 0 such
that

m∥x∥1 ≤ ∥x∥2 ≤ M∥x∥1

for all x ∈ X

Proposition 31 Equivalent norms induce the same topology: they have the same open sets
and the same convergent sequences.

Theorem 32 If dimX < ∞, all norms on X are equivalent

Remark: This is not true in infinite-dimensional spaces!

Theorem 33 The closed unit ball in a normed space X is compact if and only if dimX < ∞

Lemma 34 (Riesz’s Lemma) Let V be a closed linear subspace of a normed space X with
V ̸= X and let 0 < λ < 1. Then, there is xλ ∈ X such that ∥xλ∥ = 1 and ∥xλ − v∥ > λ for
all v ∈ V .
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3 Banach spaces

3.1 Banach spaces

Definition 35 A sequence (xn), in a normed space X, has the Cauchy property (or is a
Cauchy sequence) if

∥xn − xm∥ → 0 as n,m → ∞

More precisely, for every ϵ > 0, there is N ∈ N such that ∥xn − xm∥ ≤ ϵ for all n,m ≥ N

Proposition 36 Every convergent sequence has the Cauchy property

Proposition 37 Every Cauchy sequence is bounded and has, at most, one limit point

Proposition 38 A Cauchy sequence with a convergent subsequence must be convergent.

Definition 39 A normed linear space (X, ∥ · ∥) is called complete if every Cauchy sequence
in X converges in X

Definition 40 (Banach Space) A Banach space is a normed space in which every Cauchy
sequence is convergent

Proposition 41 Let X be a finite-dimensional normed linear space. Then X is a Banach
space

Proposition 42 Let V be a subspace of a normed space X. We have the following:

1. If X is a Banach space and V is closed, then V is a Banach space

2. If V is a Banach space, then V is closed in X

Theorem 43 Let X be a normed space. The following are equivalent:

• X is a Banach space

• Every absolutely convergent series is convergent

Theorem 44 If V is a closed subspace of a Banach space X, then the quotient space X/V
is a Banach space

Theorem 45 For each normed space X there exist a Banach space X and a linear isometry
ι : X → X such that ι(X) = X

4 Baire’s Theorem, Bounded Linear Operators and Uniform
Boundedness Principle, Open Mapping Theorem

Theorem 46 (Open Mapping Theorem) Let X and Y be Banach spaces. If T ∈ L(X,Y )
is bounded and surjective, then T is open: it maps open subsets of X to open subsets of Y

Theorem 47 (Bounded Inverse Theorem) Let X and Y be Banach spaces, let T ∈
L(X,Y ) be bounded and bijective. Then T−1 is bounded
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Theorem 48 (Closed Range Theorem) Let X and Y be Banach spaces, and let T ∈
L(X,Y ) be bounded. The following statements are equivalent:

1. There is c > 0 such that ∥Tx∥ ≥ c∥x∥ for all x ∈ X;

2. T is injective and ran(T ) is closed in Y

Theorem 49 (Equivalence of Banach Norms) Let ∥ · ∥1 and ∥ · ∥2 be two norms on a
linear space X, both of which make X a Banach space. Assume there is a constant C > 0
such that

∥x∥2 ≤ C∥x∥1
for all x ∈ X. Then, there is a constant C ′ > 0 such that

∥x1∥ ≤ C ′∥x∥2

for all x ∈ X. As a consequence, the two norms are equivalent

Definition 50 Let X and Y be normed spaces, and let V be a closed subspace of X. An
operator T ∈ L(V, Y ) is closed if its graph

G(T ) = {(x, Tx) : x ∈ V }

is closed subset of X × Y

Theorem 51 (Closed Graph Theorem) Let X and Y be normed spaces, let V be a closed
subspace of X

1. If T ∈ L(V, Y ) is bounded, it is closed

2. If X and Y are Banach spaces and T ∈ L(V, Y ) is closed, then T is bounded

Definition 52 (Bounded projection) Let V and W be closed linear subspaces of a Banach
space X. Assume

X = V +W with V ∩W = {0}

so that each x ∈ X is uniquely written as x = v + w, with v ∈ V and w ∈ W . Define the
projection operator P : X → X by Px = v, for each x ∈ V . Then P is bounded.

Theorem 53 Let T be a bounded linear operator on a Banach space X. If ∥T∥ < 1, then
I−T is invertible: there is a bounded linear operator S on X such that S(I−T ) = (I−T )S = I

5 Hahn-Banach Theorem(s)

Definition 54 Given a linear space X, its algebraic dual is the space X ′ = L(X,K).

Definition 55 Given a normed space X, its topological dual is the space X∗ = L(X,K)

Remark: Its elements are bounded linear functionals on X.

Remark: Since K ∈ {C,R}, X∗ is always a Banach space, even if X is not.

Remark: Let ∥ · ∥∗ be the norm on X∗
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Definition 56 The bilinear function ⟨·, ·⟩ : X∗ × X → K, defined by ⟨L, x⟩ = L(x) is the
duality product between X and X∗. If the spaces are not clear from the context, we write
⟨L, x⟩X∗,X

Theorem 57 (Hahn-Banach Separation Theorem) Let A and B be nonemprty, disjoint
convex subsets of a normed space X.

• If A is open, there exists L ∈ X∗\{0} such that ⟨L, x⟩ < ⟨L, y⟩ for each x ∈ A and
y ∈ B

• If A is compact and B is closed, there exist L ∈ X∗\{0}, and ϵ > 0 such that ⟨L, x⟩+ϵ ≤
⟨L, y⟩ for each x ∈ A and y ∈ B

Proposition 58 Given N ≥ 1, let C be a nonempty and convex subset of RN not containing
the origin. Then, there exists v ∈ RN\{0} such that v · x ≤ 0 for each x ∈ C. In particular,
if N ≥ 2 and C is open, then

V = {x ∈ RN : v · x = 0}

is a nontrivial subspace of RN that does not intersect C

Corollary 59 (of HBST) For each x ∈ X, there is lx ∈ X∗ such that ∥lx∥∗ = 1 and
⟨l, x⟩ = ∥x∥. We say lx is a support functional at x

Corollary 60 For every x ∈ X, ∥x∥ = max∥L∥∗=1 ⟨L, x⟩

Theorem 61 (Hahn-Banach Extension Theorem) Let V be a subspace of X and let
l ∈ V ∗ with ∥l∥V ∗ ≤ α, with α > 0. Then, there exists L ∈ X∗ such that

• L coincides with l on V

• ∥L∥X∗ ≤ α

Theorem 62 Let X be a normed linear space, let V ⊂ X be a linear subspace, and let
x0 ∈ X. Assume that

δ = d(x0, V ) = inf{∥x0 − v∥ : v ∈ V } > 0

Then there exists F ∈ X∗ such that

F (x0) = δ, F ↾ V = 0, and ∥F∥ = 1

Corollary 63 every l ∈ V ∗ is the restriction to V of some L ∈ X∗

Corollary 64 if x0 ̸∈ V , there exists L ∈ X∗ such that L = 0 on V and ⟨L, x0⟩ = 1

Definition 65 (Duality mapping) The (normalized) duality mapping is the set-valued func-
tion F : X → P(X∗) given by

F(x) = {x∗ ∈ X∗ : ∥x∗∥∗ = 1 and ⟨x∗, x⟩ = ∥x∥}

The set F(x) is always convex, but it need not be a singleton
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Definition 66 (Bidual) The bidual of X is the dual of X∗ : X∗∗ = L(X∗,K)

Definition 67 (Evaluation functional) For each x ∈ X, we define the evaluation func-
tional µx : X → R by

µx(L) = ⟨L, x⟩

for each L ∈ X∗

Proposition 68 For each x ∈ X and L ∈ X∗, we have µx ∈ X∗∗ and ∥µx∥∗∗ ≤ ∥x∥

Definition 69 The linear function J : X → X∗∗, defined by J (x) = µx, is the canonical
embedding of X into X∗∗

Proposition 70 The canonical embedding J : X → X∗∗ is an isometry.

Definition 71 The space X is reflexive if J is surjective: if every element µ of X∗∗ is of
the form µ = µx for some x ∈ X

Remark: Every reflexive space is a Banach space

Proposition 72 A Banach space X is reflexive if, and only if, X∗ is reflexive

Proposition 73 If V is a closed subspace of a reflexive space X, then V is reflexive

Definition 74 A subspace E of a normed space X is dense if E = X

Definition 75 (Separable) A normed space X is separable if it contains a countable subset
which is dense in it

Remark: Every finite dimensional normed space is separable.

Remark: The space ↕∞ is separable whenever 1 ≤ p < ∞

Theorem 76 If X ′ is separable, so is X

Corollary 77 X is separable and reflexive if, and only if, X ′ is separable and reflexive.
Finite dimensional spaces are separable and reflexive

6 Weak Topology

Definition 78 (Neighborhood) A neighborhood of x ∈ X is a set N ⊂ X such that there
is O ∈ T with

x ∈ O ⊂ N

The collection of all neighborhoods of x ∈ X is denoted by NT (x), where we omit the T if it
is either clear from the context or not relevant.

Theorem 79 A set S is open if, and only if, S ∈ N (x) for all x ∈ S (it is a neighborhood of
each of its points)
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Definition 80 Let T1 and T2 be topologies on a set X. If T1 ⊂ T2 we say that T1 is coarser
than (or equal to) T2 and T2 is finer than T1

Remark: The intersection of all topologies containing a family S of subsets of X is a
topology. It is the coarsest topology containing S. This topology must also contain the finite
intersections of members of S

Definition 81 (Basis for a topology) A basis for the topology T is a subset B of T such
that for every x ∈ X and every N ∈ N (x), there is B ∈ B satisfying

x ∈ B ⊂ N

Proposition 82 If B is a basis for T , then T is the coarsest topology containing B. There-
fore, bases uniquely determine the topology. The finite intersections of members of S are a
basis for the coarsest topology containing S

Definition 83 (Continuity) Let (X, T ) and (Y,S) be topological spaces. A function f :
X → Y is continuous at a point x ∈ X if f−1(N) ∈ NT (x) for every N ∈ NS(f(x)). It is
continuous in X if it is so at every x ∈ X.

Definition 84 The weak topology on X is the weakest/coarsest/ fewest open sets topology on
X that makes f ∈ X ′ continuous.

Remark: The weak topology is the coarsest topology containing the half-spaces.

Definition 85 The finite intersections of half-spaces are a basis for the weak topology.

Definition 86 (Neighborhood basis) For a ϵ > 0, x0 ∈ X and f1, ..., fn ∈ X ′

n⋂
k=1

{x ∈ X |fk(x− x0)| < ϵ}

Remark: the weak topology is not metrializeble.

Definition 87 A topological space has the Hausdorff property if distinct points admit disjoint
neighborhoods: if x ̸= y, there exists Nx ∈ N (x) and Ny ∈ N (y) such that Nx ∩Ny = ∅

Proposition 88 Every normed space with the weak topology has the Hausdorff property.

Definition 89 The weak topology in X ′ is then the coarsest topology fro which all the elements
of X” are continuous

Definition 90 The weak∗ topology in X ′ is the coarsest topology that makes all the elements
of J (X) ⊂ X ′′ continuous. Recall that all the elements of J (X) are the evaluation function-
als.

Theorem 91 (Weierstrass) Let C be compact, and let f : C → R be continuous. Then, f
attains its minimum and its maximus on C

Theorem 92 Let X be a Banach space.
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• The closed balls in X ′ are weak∗ly compact (Banach-Alaoglu)

• If X is separable, then the closed balls in X ′ are also weak∗ly sequentially compact,
which means that every bounded sequence has a weak∗ly convergent subsequence.

Theorem 93 Let X be a Banach space. The following statements are equivalent:

1. X is reflexive

2. The closed balls in X are weakly compact

3. The closed balls in X are weakly sequentially compact, which means that every bounded
sequence has a weakly convergent subsequence

6.1 some application

Theorem 94 Let X be reflexive, and let f : X → R be a continuous convex function such
that lim∥x∥→∞ f(x) = ∞. Then, f attains its minimum.

7 Hilbert spaces

Definition 95 (Inner product) An inner product in a vector space H is a function ⟨·, ·⟩ :
H ×H → K such that

1. ⟨x, x⟩ > 0 for every x ̸= 0

2. ⟨x, y⟩ = ⟨y, x⟩ for each x, y ∈ H

3. ⟨αx+ y, z⟩ = α ⟨x, z⟩+ ⟨y, z⟩ for each α ∈ K and x, y, z ∈ H

Remark: ⟨x, αy + z⟩ = α ⟨x, y⟩+ ⟨x, z⟩ for each α ∈ K and x, y, z ∈ H

Definition 96 The function ∥ · ∥ : H → R, defined by ∥x∥ =
√

⟨x, x⟩, is a norm on H.

Proposition 97 For each x, y ∈ H we have

• The Cauchy-Schwarz inequality: | ⟨x, y⟩ | ≤ ∥x∥∥y∥

• Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥

Definition 98 Given y ∈ H, define a function Ly : H → K by Ly(h) = ⟨h, y⟩

Proposition 99 The function L : H → H∗, defined by L(y) = Ly, is an isometry

Proposition 100 Let (xn) and (yn) be sequences in H. If xn → x and yn → y, then

lim
n→∞

⟨xn, yn⟩ = ⟨x, y⟩

Definition 101 We say x, y are orthogonal, and write x ⊥ y, if ⟨x, y⟩ = 0

Theorem 102 (Pythagoras) If x ⊥ y, then ∥x+ y∥2 = ∥x∥2 + ∥y∥2
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Proposition 103 (Parallelogram identity) For each x, y ∈ H, we have ∥x+ y∥2 + ∥x−
y∥2 = 2(∥x∥2 + ∥y∥2)

Definition 104 If ∥x∥ =
√

⟨x, x⟩ for all x ∈ X, we say that the norm ∥ · ∥ is associated to
the inner product ⟨·, ·⟩

Definition 105 (Hilbert space) A Hilbert space is a Banach space, whose norm is associ-
ated to an inner product

7.1 Orthogonal projection

Proposition 106 Let K be a nonempty, closed and convex subset of H and let x ∈ H. Then,
there exists a unique y∗ ∈ K such that

∥x− y∗∥ = min
y∈K

∥x− y∥

Moreover, it is the only element of K such that

⟨x− y∗, y − y∗⟩ ≤ 0 ∀y ∈ K

Remark: The point y∗ is the projection of x onto K and will be denoted by PK(x)

Proposition 107 Let K be a nonempty, closed and convex subset of H. The function x 7→
PK(x) is non-expansive

Proposition 108 If M is closed subspace of H, then x− PM (x) ⊥ M for each x ∈ H

7.2 Representation Theorem

Recall that each y ∈ H defines Ly ∈ H∗ by Ly(h) = ⟨h, y⟩, moreover ∥Ly∥∗ = ∥y∥

Theorem 109 (Riesz-Frechet) For each L ∈ H∗, there is a unique yL ∈ H such that

L(h) = ⟨yL, h⟩

for each h ∈ H. Therefore, the function L 7→ yL is an isometric isomorphism.

Corollary 110 The inner product ⟨·, ·⟩∗ : H∗ ×H∗ → K, defined by

⟨L1, L2⟩∗ = L1(yL2) = ⟨yL1 , yL2⟩

turns H∗ into a Hilbert space, which is isometrically isomorphic to H. The norm associated
with ⟨·, ·⟩∗ is precisely ∥ · ∥∗

Corollary 111 Hilbert spaces are reflexive

Remark: A sequence (xn) on a Hilbert space H converges weakly to x ∈ H if, and only
if, limn→∞ ⟨xn − x, y⟩ = 0 for all y ∈ H

Proposition 112 A sequence in (xn) converges strongly to x if, and only if, it converges
weakly to x and limn→∞ sup ∥xn∥ ≤ ∥x∥

12 /faculty of Science and Engineering



University of Groningen Functional analysis /Zambelli Lorenzo

7.3 Orthonormalization

Definition 113 (Orthonormal sets) A set {ei}i∈I in a linear space H with an inner prod-
uct is orthonormal if

• ∥ei∥ = 1 for all i ∈ I; and

• ⟨ei, ej⟩ = 0, whenever i ̸= j

Remark: Every finite subset of an orthonormal set is linearly independent

Proposition 114 Let {e1, ..., en} be an orthonormal set in a linear space H with an inner
product, and let V = span{e1, ..., en}. Then, for every x ∈ H

PV (x) =
n∑

i=1

⟨x, ei⟩ ei

Proposition 115 (Gram-Schmidt) Given a linearly independent set {a1, ..., an} in a linear
space H with an inner product, there is an orthonormal set {e1, ..., en} such that

span{e1, ..., en} = span{a1, ..., ak}

for all k ∈ {1, ..., n}

Procedure: (also for the proof)

1. Define

e1 =
a1
∥a1∥

⇒ ∥e1∥ = 1

note that if n = 1, then the Gram-Schmidt is indeed true, span{e1} = span{a1}.

2. if n > 1, then define recursively

en+1 =
bn+1

∥bn+1∥
, bn+1 = an+1 − PVn(an+1)

where Vn = span{e1, ..., en} = span{a1, ..., an}

3. The vectors {e1, ..., en+1} are orthonormal and span{e1, ..., en+1} = span{a1, ..., an+1}

Proposition 116 Let {ei}i∈N be an orthonormal set in a linear space H with an inner prod-
uct. Then, for every x ∈ H,

∞∑
i=1

| ⟨x, ei⟩ |2 ≤ ∥x∥2

Proposition 117 Let {ei}i∈N be an orthonormal set in Hilbert space H. The series
∑∞

i=1 λiei
is convergent if, and only if,

∑∞
i=1 |λi|2 < ∞. In such case,∥∥∥∥∥

∞∑
i=1

λiei

∥∥∥∥∥
2

=

∞∑
i=1

|λi|2
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Definition 118 An orthonormal set {ei}i∈N is an orthonormal basis for a Hilbert space H if

span{ei}i∈N = H

Theorem 119 A Hilbert space is separable if, and only if, it has an orthonormal basis

Theorem 120 The following statements about orthonormal set {ei}i∈N in a Hilbert space H
are equivalent:

1. {ei}i∈N is an orthonormal basis for H

2. {ei}⊥i∈N = {0}

3. For each x ∈ H,
∑∞

i=1 ⟨x, ei⟩ ei = x

4. For each x ∈ H,
∑∞

i=1 | ⟨x, ei⟩ |2 = ∥x∥2

8 Adjoint operators

Definition 121 Let X and Y be Hilbert spaces, and let T ∈ B(X,Y ). The adjoint of T is
the bounded linear operator T ∗ ∈ B(Y,X) satisfying

⟨Tx, y⟩ = ⟨x, T ∗y⟩

for all x ∈ X and y ∈ Y

Theorem 122 The adjoint of L is well defined, unique, and has the following properties:

1. (T ∗)∗ = T

2. ∥T ∗∥ = ∥T∥

3. ∥T ∗T∥ = ∥T∥2

Remark: If T is a matrix, then T ∗ = T
t

Proposition 123 Let X,Y and Z be Hilbert spaces. We have the following

• If T, S ∈ B(X,Y ) and λ, µ ∈ K, then (λT + µS)∗ = λT ∗ + µS∗

• If T ∈ B(X,Y ) and S ∈ B(Y,Z), then (ST )∗ = T ∗S∗

Proposition 124 Let T be invertible. Then, T ∗ is invertible and (T ∗)−1 = (T−1)∗

Lemma 125 For T ∈ B(X,Y ) and λ ∈ K we have

(ran(T − λ))⊥ = ker(T ∗ − λ) ⊂ Y

(ran(T ∗ − λ))⊥ = ker(T − λ) ⊂ X
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Corollary 126 Given T ∈ B(X) and λ ∈ K, we have the following decompositions:

X = ker(T ∗ − λ)⊕ ran(T − λ)

X = ker(T − λ)⊕ ran(T ∗ − λ)

where ⊕ denotes a direct sum of orthogonal closed subspaces.

Definition 127 Let X be a Hilbert space. An operator T ∈ B(X) is selfadjoint if T ∗ = T .

Definition 128 Let X be a Hilbert space. An operator T ∈ B(X) is normal if TT ∗ = T ∗T

Proposition 129 Let X be a Hilbert space.

• If T is selfadjoint, it is normal

• If T ∈ B(X) is normal, then

– ∥T ∗x∥ = ∥Tx∥ for all x ∈ X

– ker(T − λ) = ker(T ∗ − λ) for all λ ∈ K

Definition 130 Let X be a Hilbert space. An operator P ∈ B(X) is an orthogonal projection
if:

• P 2 = P

• kerP ⊥ ranP

Proposition 131 A projection P in a Hilbert space H is orthogonal if, and only if, it is
selfadjoint

9 Eigenvalues, Eigenvectors of linear operators

Definition 132 Let X be a Banach space, and let T ∈ B(X). A scalar λ ∈ K is an eigenvalue
of T if there is x ̸= 0 such that

Tx = λx

The space ker(T−λ) is the associated eigenspace, and its nonzero elements are the eigenvectors
of T

Proposition 133 λ is an eigenvalue of T if, and only if, λ is an eigenvalue of T ∗.

Proposition 134 If H is a Hilbert space and T ∈ B(H) is normal, then the eigenspaces
corresponding to distinct eigenvalues are orthogonal to each other.

Definition 135 Let X be a Banach space and let T ∈ B(X). The resolvent set of T is

ρ(T ) = {λ ∈ K : (T − λ)−1 ∈ B(X)}

The resolvent operator of T with index λ ∈ ρ(T ) is R(λ) = (T − λ)−1
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Definition 136 Let X be a Banach space and let T ∈ B(X). The spectrum of T is σ(T ) =
K\ρ(T )

Remark: ρ(T ∗) = ρ(T ) and σ(T ∗) = σ(T )

Proposition 137 Let X be a Banach space, and let T ∈ B(X). If λ ∈ σ(T ), then |λ| ≤ ∥T∥.
In turn, if |λ| > ∥T∥, then λ ∈ ρ(T ) and

R(λ) = −
∞∑
n=0

Tn

λn+1

Proposition 138 Let H be a Hilbert space, and let T ∈ B(H) be normal. Then, λ ∈ ρ(T )
if, and only if, there is c > 0 such that

∥(T − λ)x∥ ≥ c∥x∥

for all x ∈ H
As a consequence, λ ∈ σ(T ) if, and only if, there is a sequence (xn) such that ∥xn∥ = 1 for
all n, and (T − λ)xn → 0

10 Compact operators

Corollary 139 Let X be a Banach space, and let T ∈ B(X). Then ρ(T ) is open and σ(T )
is closed.

Definition 140 Let X and Y be Banach spaces. A linear operator T : X → Y is compact if
T (B) is compact whenever B ⊂ X is bounded

Proposition 141 T : X → Y is compact if, and only if, for every bounded sequence (xn),
the sequence (Txn) has a convergent subsequence

Proposition 142 Compact operators are bounded

Proposition 143 Every bounded linear operator with finite rank is compact

Definition 144 Given X and Y Banach, we denote the space of all compact operators from
X to Y by K(X,Y )

Proposition 145 K(X,Y ) is closed in B(X,Y ): Limits of compact operators are compact

Theorem 146 Let X be a Banach space, and let T ∈ K(X)

1. For each ϵ > 0, the number of eigenvalues λ of T with |λ| ≥ ϵ is finite. In particular, T
has countably many eigenvalues

2. if λ ̸= 0 is an eigenvalue of T , then dim(ker(T − λ)) < ∞

3. If dimX = ∞, then 0 ∈ σ(T )
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10.1 The spectral theorem for compact selfadjoint operators

Proposition 147 Let H be a complex Hilbert space, and let T : H → H be bounded. Then,
T is selfadjoint if, and only if, ⟨Tx, x⟩ ∈ R for all x ∈ H. As a consequence, all eigenvalues
of selfadjoint operator are real

Definition 148 Let H be Hilbert space. A bounded linear operator T : H → H is nonnegative
if ⟨Tx, x⟩ ≥ 0 for all x ∈ H. We shall write T ≥ 0

Proposition 149 Let T ≥ 0

1. T is selfadjoint

2. ∥Tx∥2 ≤ ∥T∥ ⟨Tx, x⟩ for all x ∈ H

Lemma 150 Let H be a Hilbert space and let T : H → H be bounded and selfadjoint. Define

a := inf
∥x∥=1

⟨Tx, x⟩ and b := sup
∥x∥=1

⟨Tx, x⟩

we have the following

1. T − a ≥ 0 and b− T ≥ 0

2. σ(T ) ⊂ [a, b], and a, b ∈ σ(T )

3. ∥T∥ = sup∥x∥=1 | ⟨Tx, x⟩ | = max{|a|, |b|}

Proposition 151 Let H be a Hilbert space, and let T : H → H be a compact and selfadjoint.
Then, either −∥T∥ or ∥T∥ is an eigenvalue of T

Corollary 152 If σ(T ) = {0}, then T ≡ 0

Theorem 153 (The spectral theorem) Let H be a separable Hilbert space, and let T :
H → H be compact and selfadjoint. Then, there is an orthonormal basis of H composed
of eigenvectors of T . More precisely, there exist countably many orthonormal eigenvectors
(en)n∈N , corresponding to real eigenvalues (λn)n∈N , such that

Tx =
∑
n∈N

λn ⟨x, en⟩ en

for all x ∈ H. If dim(H) = ∞, then N = N and limn→∞ λn = 0
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