Functional Analysis

Zambelli Lorenzo
BSc Applied Mathematics

February 2022-April 2022

1 Linear spaces and Linear operators

1.1 Linear spaces

Definition 1 (1.1) Let X be a set and $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. Assume that X is provided with two operations: addition and scalar multiplication, i.e., mappings from $X \times X$ to X and $\mathbb{K} \times X$ to X, denoted by

$$
(x, y) \mapsto x+y, \quad(\lambda, x) \mapsto \lambda x, \quad x, y \in X, \quad \lambda \in \mathbb{K}
$$

respectively. Then X is said to be linear space over \mathbb{K} if for all $x, y, z \in X$ and $\lambda, \mu \in \mathbb{K}$ the following axioms are satisfied:
(1) $x+y=y+x$;
(2) $(x+y)+z=x+(y+z)$;
(3) there exists an element $0 \in X$ such that $x+0=x$;
(4) There exists an element $-x \in X$ such that $x+(-x)=0$;
(5) $\lambda(\mu x)=(\lambda \mu) x$;
(6) $1 x=x$;
(7) $\lambda(x+y)=\lambda x+\lambda y$;
(8) $(\lambda+\mu) x+\lambda x+\mu x$

A subset V of a linear space X is called a linear subspace when it is a linear space itself with the given operations.

Remark: Note that in this course we often refer \mathbb{K} to be either \mathbb{R} or \mathbb{C}.

Examples:

$$
\begin{aligned}
\mathcal{F}(S, \mathbb{K})=\{f: S \rightarrow \mathbb{K}\} & \mathcal{C}(S, \mathbb{K})=\{f:[a, b] \rightarrow \mathbb{K}: f \text { is continuous }\} \\
l^{\infty}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in \mathbb{K}, \sup _{i \in \mathbb{N}}\left|x_{i}\right|<\infty\right\} & l^{p}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{i} \in \mathbb{K}, \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty\right\}
\end{aligned}
$$

Definition 2 (1.5) Let X be a linear space. The sum of two linear subspaces $V, W \subset X$ is defied as

$$
V+W=\{x+y: x \in V, y \in W\}
$$

the sum is called direct if $V \cap W=\{0\}$

1.2 Linear operators

Definition 3 (Linear mapping) Let X and Y be linear spaces over \mathbb{K}. A mapping T : $X \rightarrow Y$ is called linear if

- $\operatorname{dom} T=X$
- $T(x+y)=T x+T y$
- $T(\lambda x)=\lambda(T x)$
for all $x, y \in X$ and $\lambda \in \mathbb{K}$. The collection of all linear mappings from X to Y is denoted by $L(X, Y)$

Remark: Note that a linear map $T: X \rightarrow Y$ is injective iff $\operatorname{ker} T=\{0\}$ and is surjective iff $\operatorname{ran} T=Y$

Definition 4 (Projection) Let X be a linear space and $P: X \rightarrow X$ be a linear mapping. Then P is called projection if $P^{2}=P$.

Lemma 5 (1.13) A linear mapping $P: X \rightarrow X$ is a projection if and only if $I-P$ is a projection. In this case:

$$
\operatorname{ran} P=\operatorname{ker}(I-P), \quad \text { ker } P=\operatorname{ran}(I-P)
$$

Moreover, $X=\operatorname{ran} P+\operatorname{ker} P$ is a direct sum.

1.3 Quotient spaces of linear spaces

Definition $6 A$ relation \sim on a set X is called an equivalence relation if

1. reflexive: for each $x \in X$ one has $x \sim x$
2. symmetric: if $x \sim y$, then $y \sim x$
3. transitive: $(x \sim y \wedge y \sim z)$, then $x \sim z$

Moreover, for $x \in X$ the equivalence class $[x]$ of x is defined as

$$
[x]=\{y \in X: x \sim y\}
$$

Definition 7 (Quotient set) The set of all equivalence classes in X is denoted by X / \sim (quotient set), and the mapping $\pi: X \rightarrow X / \sim$ given by $x \mapsto[x]$ is called the natural mapping

Theorem 8 (1.18) Let X be a set with an equivalence relation \sim. Let $x, y \in X$, then one has the following statements:

1. $x \in[x]$
2. $[x]=[y] \Leftrightarrow x \sim y$
3. $[x] \cap[y] \neq \emptyset \Rightarrow[x]=[y]$
4. $X=\bigcup_{x \in X}[x]$, the disjoint union of equivalence classes

Definition 9 Let X be a linear space and let $V \subset X$ be a linear subspace. Then V induces an equivalence relation on X by

$$
x \sim y \Leftrightarrow x-y \in V
$$

The equivalence class to which $x \in X$ belongs is denoted by $x+V$

$$
x+V=\{y \in X: x-y \in V\}
$$

The set of equivalence classes is denoted by X / V
Definition 10 Let X be a linear space and let $V \subset X$ be a linear subspace. The natural mapping $\pi: X \rightarrow X / V$ is defined by

$$
\pi(x)=x+V, \quad x \in X
$$

moreover, the mapping π is linear, subjective and $\operatorname{ker} \pi=V$

1.4 Isomorphisms between linear spaces

Theorem 11 (Isomorphism Theorem) let X, Y be linear spaces and let $T \in L(X ; Y)$. Then, the map $\hat{T}: X / \operatorname{ker} T \rightarrow Y$, given by

$$
\hat{T}([x])=T(x)
$$

is well defined, linear and injective. As consequence, the spaces $X / \operatorname{ker} T$ and $\operatorname{ran} T$ are isomorphic. If in addition, T is surjective, $\hat{T}: X / \operatorname{ker}(T) \rightarrow Y$ is an isomorphism of linear spaces.

Theorem 12 Let X be a linear space with $V \subset X$ a linear subspace. If $\operatorname{dim} X<\infty$, then $\operatorname{dim} X / V<\infty$ and

$$
\operatorname{dim} X / V=\operatorname{dim} X-\operatorname{dim} V
$$

Corollary 13 Let $T: X \rightarrow Y$ be a linear map with $\operatorname{dim} X<\infty$. Then

$$
\operatorname{dim} \operatorname{ker} T+\operatorname{dim} \operatorname{ran} T=\operatorname{dim} X
$$

1.5 Dual spaces of linear spaces

Definition 14 Let X be a linear space over \mathbb{K}. The dual space of X (algebraic dual) is defined as $X^{\prime}=L(X, \mathbb{K})$. The elements of X^{\prime} called functionals on X

Lemma 15 Let X be a finite-dimensional linear space. Then X^{\prime} is a finite-dimensional linear space and $\operatorname{dim} X^{\prime}=\operatorname{dim} X$

Definition 16 (Bidual) Let X be a linear space over \mathbb{K}. The second-dual space of X is defined as $X^{\prime \prime}=L\left(X^{\prime}, \mathbb{K}\right)$. The natural mapping $J: X \rightarrow X$ " is given by

$$
J(x)(f)=f(x), \quad x \in X, \quad f \in X^{\prime}
$$

Lemma 17 Let X be a finite-dimensional linear space. Then J is a bijection between X and X"

2 Normed linear spaces and inner product spaces

2.1 Linear spaces with a norm

Definition 18 Let X be a linear space over $\mathbb{K}=\mathbb{R}$ or \mathbb{C}. The mapping $\|\cdot\|: X \rightarrow \mathbb{R}$ is called norm if for all $x, y \in X$ and $\lambda \in \mathbb{K}$ the following axioms are satisfied:

1. $\|x\| \geq 0$
2. $\|x\|=0 \Leftrightarrow x=0$
3. $\|\lambda x\|=|\lambda|\|x\|$
4. $\|x+y\| \leq\|x\|+\|y\|$

The pair $(X,\|\cdot\|)$ is called a normed linear over \mathbb{K}. By abuse of language X itself will often be called a normed linear space. If in (2) only the implication (\Leftarrow) holds, then $\| \cdot$ is called a semi-norm and X is called a semi-normed linear space over \mathbb{K}.

Proposition 19 (Reverse Triangle Inequality) For all $x, y \in X$, we have $|\|x\|-\|y\|| \leq$ $\|x-y\|$

Proposition 20 The expression $d(x, y)=\|x-y\|$ defines a metric on X, and the function d is continuous on $X \times X$.

Remark: This metric induce a natural topology, which we call the strong topology and is generated by the open balls

$$
B\left(x_{0}, \epsilon\right)=\left\{y \in X:\left\|y-x_{0}\right\|<\epsilon\right\}, \quad \text { for } x_{0} \in X \quad \text { and } \epsilon>0
$$

Proposition 21 (Young's inequality) For $a, b \geq 0$, we have

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q}
$$

Proposition 22 (Holder's inequality) For $x \in \mathbb{K}^{n}$ and let $1 / p+1 / q=1$, where $1<p<$ ∞, we have

$$
\sum_{i=1}^{n}\left|x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left|y_{i}\right|^{q}\right)^{1 / q}
$$

Proposition 23 (Minkowski's Inequality) For $x \in \mathbb{K}^{n}$ and let $1 \leq p<\infty$, we have

$$
\left(\sum_{i=1}^{n}\left|x_{i}+y_{i}\right|^{p}\right)^{1 / p} \leq\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}+\left(\sum_{i=1}^{n}\left|y_{i}\right|^{p}\right)^{1 / p}
$$

Definition $24 A$ sequence $\left(x_{n}\right)$ in a normed space X converges to $x \in X$ if

$$
\left\|x_{n}-x\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

In other words, for every $\epsilon>0$, there is $N \in \mathbb{N}$, such that

$$
\left\|x_{n}-x\right\| \leq \epsilon
$$

for all $n \geq N$

Proposition 25 If $x_{n} \rightarrow x$ in X, then $\left\|x_{n}\right\| \rightarrow\|x\|$ in \mathbb{R}. As a consequence, convergent sequences are bounded.

Proposition 26 (Topological vector spaces) The sum and the multiplication by a scalar are continuous functions. More precisely, if $x_{n} \rightarrow x$ in $X, y_{n} \rightarrow y$ in X and $\lambda_{n} \rightarrow \lambda$ in \mathbb{K}, then

$$
x_{n}+y_{n} \rightarrow x+y \quad \text { and } \quad \lambda_{n} x_{n} \rightarrow \lambda x
$$

in X. Normed spaces are topological vector spaces

Definition 27 (distance) Let X be a normed space. The distance between a point $x \in X$ and a set $S \subset X$ is

$$
d(x, S)=\inf \{\|x-y\|: y \in S\}
$$

It is a continuous function on X

Definition 28 The closure of $S \subset X$, where X is a normed space is

$$
\bar{S}:=\{x \in X: d(x, S)=0\}
$$

Proposition 29 - A point $x \in X$ is in \bar{S} if, and only if, a sequence in S converges to x

- A set $S \subset X$ is closed if, and only if, $\bar{S}=S($ or $\bar{S} \subset S)$
- If V is a closed subspace, then $\|[x]\|:=d(x, V)$ is a norm in X / V
- Every subspace of finite dimension is closed

Definition 30 Two norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ on X are equivalent if there exist $m, M>0$ such that

$$
m\|x\|_{1} \leq\|x\|_{2} \leq M\|x\|_{1}
$$

for all $x \in X$

Proposition 31 Equivalent norms induce the same topology: they have the same open sets and the same convergent sequences.

Theorem 32 If $\operatorname{dim} X<\infty$, all norms on X are equivalent

Remark: This is not true in infinite-dimensional spaces!

Theorem 33 The closed unit ball in a normed space X is compact if and only if $\operatorname{dim} X<\infty$

Lemma 34 (Riesz's Lemma) Let V be a closed linear subspace of a normed space X with $V \neq X$ and let $0<\lambda<1$. Then, there is $x_{\lambda} \in X$ such that $\left\|x_{\lambda}\right\|=1$ and $\left\|x_{\lambda}-v\right\|>\lambda$ for all $v \in V$.

3 Banach spaces

3.1 Banach spaces

Definition 35 A sequence $\left(x_{n}\right)$, in a normed space X, has the Cauchy property (or is a Cauchy sequence) if

$$
\left\|x_{n}-x_{m}\right\| \rightarrow 0 \quad \text { as } \quad n, m \rightarrow \infty
$$

More precisely, for every $\epsilon>0$, there is $N \in \mathbb{N}$ such that $\left\|x_{n}-x_{m}\right\| \leq \epsilon$ for all $n, m \geq N$
Proposition 36 Every convergent sequence has the Cauchy property
Proposition 37 Every Cauchy sequence is bounded and has, at most, one limit point
Proposition 38 A Cauchy sequence with a convergent subsequence must be convergent.
Definition 39 A normed linear space $(X,\|\cdot\|)$ is called complete if every Cauchy sequence in X converges in X

Definition 40 (Banach Space) A Banach space is a normed space in which every Cauchy sequence is convergent

Proposition 41 Let X be a finite-dimensional normed linear space. Then X is a Banach space

Proposition 42 Let V be a subspace of a normed space X. We have the following:

1. If X is a Banach space and V is closed, then V is a Banach space
2. If V is a Banach space, then V is closed in X

Theorem 43 Let X be a normed space. The following are equivalent:

- X is a Banach space
- Every absolutely convergent series is convergent

Theorem 44 If V is a closed subspace of a Banach space X, then the quotient space X / V is a Banach space

Theorem 45 For each normed space X there exist a Banach space \mathbb{X} and a linear isometry $\iota: X \rightarrow \mathbb{X}$ such that $\overline{\iota(X)}=\mathbb{X}$

4 Baire's Theorem, Bounded Linear Operators and Uniform Boundedness Principle, Open Mapping Theorem

Theorem 46 (Open Mapping Theorem) Let X and Y be Banach spaces. If $T \in L(X, Y)$ is bounded and surjective, then T is open: it maps open subsets of X to open subsets of Y

Theorem 47 (Bounded Inverse Theorem) Let X and Y be Banach spaces, let $T \in$ $L(X, Y)$ be bounded and bijective. Then T^{-1} is bounded

Theorem 48 (Closed Range Theorem) Let X and Y be Banach spaces, and let $T \in$ $L(X, Y)$ be bounded. The following statements are equivalent:

1. There is $c>0$ such that $\|T x\| \geq c\|x\|$ for all $x \in X$;
2. T is injective and $\operatorname{ran}(T)$ is closed in Y

Theorem 49 (Equivalence of Banach Norms) Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be two norms on a linear space X, both of which make X a Banach space. Assume there is a constant $C>0$ such that

$$
\|x\|_{2} \leq C\|x\|_{1}
$$

for all $x \in X$. Then, there is a constant $C^{\prime}>0$ such that

$$
\left\|x_{1}\right\| \leq C^{\prime}\|x\|_{2}
$$

for all $x \in X$. As a consequence, the two norms are equivalent
Definition 50 Let X and Y be normed spaces, and let V be a closed subspace of X. An operator $T \in L(V, Y)$ is closed if its graph

$$
G(T)=\{(x, T x): x \in V\}
$$

is closed subset of $X \times Y$
Theorem 51 (Closed Graph Theorem) Let X and Y be normed spaces, let V be a closed subspace of X

1. If $T \in L(V, Y)$ is bounded, it is closed
2. If X and Y are Banach spaces and $T \in L(V, Y)$ is closed, then T is bounded

Definition 52 (Bounded projection) Let V and W be closed linear subspaces of a Banach space X. Assume

$$
X=V+W \quad \text { with } \quad V \cap W=\{0\}
$$

so that each $x \in X$ is uniquely written as $x=v+w$, with $v \in V$ and $w \in W$. Define the projection operator $P: X \rightarrow X$ by $P x=v$, for each $x \in V$. Then P is bounded.

Theorem 53 Let T be a bounded linear operator on a Banach space X. If $\|T\|<1$, then $I-T$ is invertible: there is a bounded linear operator S on X such that $S(I-T)=(I-T) S=I$

5 Hahn-Banach Theorem(s)

Definition 54 Given a linear space X, its algebraic dual is the space $X^{\prime}=L(X, \mathbb{K})$.
Definition 55 Given a normed space X, its topological dual is the space $X^{*}=\mathcal{L}(X, \mathbb{K})$
Remark: Its elements are bounded linear functionals on X.
Remark: Since $\mathbb{K} \in\{\mathbb{C}, \mathbb{R}\}, X^{*}$ is always a Banach space, even if X is not.
Remark: Let $\|\cdot\|_{*}$ be the norm on X^{*}

Definition 56 The bilinear function $\langle\cdot, \cdot\rangle: X^{*} \times X \rightarrow \mathbb{K}$, defined by $\langle L, x\rangle=L(x)$ is the duality product between X and X^{*}. If the spaces are not clear from the context, we write $\langle L, x\rangle_{X^{*}, X}$

Theorem 57 (Hahn-Banach Separation Theorem) Let A and B be nonemprty, disjoint convex subsets of a normed space X.

- If A is open, there exists $L \in X^{*} \backslash\{0\}$ such that $\langle L, x\rangle<\langle L, y\rangle$ for each $x \in A$ and $y \in B$
- If A is compact and B is closed, there exist $L \in X^{*} \backslash\{0\}$, and $\epsilon>0$ such that $\langle L, x\rangle+\epsilon \leq$ $\langle L, y\rangle$ for each $x \in A$ and $y \in B$

Proposition 58 Given $N \geq 1$, let C be a nonempty and convex subset of \mathbb{R}^{N} not containing the origin. Then, there exists $v \in \mathbb{R}^{N} \backslash\{0\}$ such that $v \cdot x \leq 0$ for each $x \in C$. In particular, if $N \geq 2$ and C is open, then

$$
V=\left\{x \in \mathbb{R}^{N}: v \cdot x=0\right\}
$$

is a nontrivial subspace of \mathbb{R}^{N} that does not intersect C
Corollary 59 (of HBST) For each $x \in X$, there is $l_{x} \in X^{*}$ such that $\left\|l_{x}\right\|_{*}=1$ and $\langle l, x\rangle=\|x\|$. We say l_{x} is a support functional at x

Corollary 60 For every $x \in X,\|x\|=\max _{\|L\|_{*}=1}\langle L, x\rangle$
Theorem 61 (Hahn-Banach Extension Theorem) Let V be a subspace of X and let $l \in V^{*}$ with $\|l\|_{V^{*}} \leq \alpha$, with $\alpha>0$. Then, there exists $L \in X^{*}$ such that

- L coincides with lon V
- $\|L\|_{X^{*}} \leq \alpha$

Theorem 62 Let X be a normed linear space, let $V \subset X$ be a linear subspace, and let $x_{0} \in X$. Assume that

$$
\delta=d\left(x_{0}, V\right)=\inf \left\{\left\|x_{0}-v\right\|: v \in V\right\}>0
$$

Then there exists $F \in X^{*}$ such that

$$
F\left(x_{0}\right)=\delta, \quad F \upharpoonright V=0, \quad \text { and }\|F\|=1
$$

Corollary 63 every $l \in V^{*}$ is the restriction to V of some $L \in X^{*}$
Corollary 64 if $x_{0} \notin V$, there exists $L \in X^{*}$ such that $L=0$ on V and $\left\langle L, x_{0}\right\rangle=1$
Definition 65 (Duality mapping) The (normalized) duality mapping is the set-valued function $\mathcal{F}: X \rightarrow \mathcal{P}\left(X^{*}\right)$ given by

$$
\mathcal{F}(x)=\left\{x^{*} \in X^{*}:\left\|x^{*}\right\|_{*}=1 \text { and }\left\langle x^{*}, x\right\rangle=\|x\|\right\}
$$

The set $\mathcal{F}(x)$ is always convex, but it need not be a singleton

Definition 66 (Bidual) The bidual of X is the dual of $X^{*}: X^{* *}=\mathcal{L}\left(X^{*}, \mathbb{K}\right)$
Definition 67 (Evaluation functional) For each $x \in X$, we define the evaluation functional $\mu_{x}: X \rightarrow \mathbb{R}$ by

$$
\mu_{x}(L)=\langle L, x\rangle
$$

for each $L \in X^{*}$
Proposition 68 For each $x \in X$ and $L \in X^{*}$, we have $\mu_{x} \in X^{* *}$ and $\left\|\mu_{x}\right\|_{* *} \leq\|x\|$
Definition 69 The linear function $\mathcal{J}: X \rightarrow X^{* *}$, defined by $\mathcal{J}(x)=\mu_{x}$, is the canonical embedding of X into $X^{* *}$

Proposition 70 The canonical embedding $\mathcal{J}: X \rightarrow X^{* *}$ is an isometry.
Definition 71 The space X is reflexive if \mathcal{J} is surjective: if every element μ of $X^{* *}$ is of the form $\mu=\mu_{x}$ for some $x \in X$

Remark: Every reflexive space is a Banach space
Proposition 72 A Banach space X is reflexive if, and only if, X^{*} is reflexive
Proposition 73 If V is a closed subspace of a reflexive space X, then V is reflexive
Definition $74 A$ subspace E of a normed space X is dense if $\bar{E}=X$
Definition 75 (Separable) A normed space X is separable if it contains a countable subset which is dense in it

Remark: Every finite dimensional normed space is separable.
Remark: The space $\downarrow \infty$ is separable whenever $1 \leq p<\infty$
Theorem 76 If X^{\prime} is separable, so is X
Corollary $77 X$ is separable and reflexive if, and only if, X^{\prime} is separable and reflexive. Finite dimensional spaces are separable and reflexive

6 Weak Topology

Definition 78 (Neighborhood) A neighborhood of $x \in X$ is a set $N \subset X$ such that there is $\mathcal{O} \in \mathcal{T}$ with

$$
x \in \mathcal{O} \subset N
$$

The collection of all neighborhoods of $x \in X$ is denoted by $\mathcal{N}_{\mathcal{T}}(x)$, where we omit the \mathcal{T} if it is either clear from the context or not relevant.

Theorem $79 A$ set S is open if, and only if, $S \in \mathcal{N}(x)$ for all $x \in S$ (it is a neighborhood of each of its points)

Definition 80 Let \mathcal{T}_{1} and \mathcal{T}_{2} be topologies on a set X. If $\mathcal{T}_{1} \subset \mathcal{T}_{2}$ we say that \mathcal{T}_{1} is coarser than (or equal to) \mathcal{T}_{2} and \mathcal{T}_{2} is finer than \mathcal{T}_{1}

Remark: The intersection of all topologies containing a family \mathcal{S} of subsets of X is a topology. It is the coarsest topology containing \mathcal{S}. This topology must also contain the finite intersections of members of \mathcal{S}

Definition 81 (Basis for a topology) A basis for the topology \mathcal{T} is a subset \mathcal{B} of \mathcal{T} such that for every $x \in X$ and every $N \in \mathcal{N}(x)$, there is $B \in \mathcal{B}$ satisfying

$$
x \in B \subset N
$$

Proposition 82 If \mathcal{B} is a basis for \mathcal{T}, then \mathcal{T} is the coarsest topology containing \mathcal{B}. Therefore, bases uniquely determine the topology. The finite intersections of members of \mathcal{S} are a basis for the coarsest topology containing \mathcal{S}

Definition 83 (Continuity) Let (X, \mathcal{T}) and (Y, \mathcal{S}) be topological spaces. A function f : $X \rightarrow Y$ is continuous at a point $x \in X$ if $f^{-1}(N) \in \mathcal{N}_{\mathcal{T}}(x)$ for every $N \in \mathcal{N}_{\mathcal{S}}(f(x))$. It is continuous in X if it is so at every $x \in X$.

Definition 84 The weak topology on X is the weakest/coarsest/fewest open sets topology on X that makes $f \in X^{\prime}$ continuous.

Remark: The weak topology is the coarsest topology containing the half-spaces.
Definition 85 The finite intersections of half-spaces are a basis for the weak topology.
Definition 86 (Neighborhood basis) For $a \epsilon>0, x_{0} \in X$ and $f_{1}, \ldots, f_{n} \in X^{\prime}$

$$
\bigcap_{k=1}^{n}\left\{x \in X\left|f_{k}\left(x-x_{0}\right)\right|<\epsilon\right\}
$$

Remark: the weak topology is not metrializeble.
Definition 87 A topological space has the Hausdorff property if distinct points admit disjoint neighborhoods: if $x \neq y$, there exists $N_{x} \in \mathcal{N}(x)$ and $N_{y} \in \mathcal{N}(y)$ such that $N_{x} \cap N_{y}=\emptyset$

Proposition 88 Every normed space with the weak topology has the Hausdorff property.
Definition 89 The weak topology in X^{\prime} is then the coarsest topology fro which all the elements of X " are continuous

Definition 90 The weak* topology in X^{\prime} is the coarsest topology that makes all the elements of $\mathcal{J}(X) \subset X^{\prime \prime}$ continuous. Recall that all the elements of $\mathcal{J}(X)$ are the evaluation functionals.

Theorem 91 (Weierstrass) Let C be compact, and let $f: C \rightarrow \mathbb{R}$ be continuous. Then, f attains its minimum and its maximus on C

Theorem 92 Let X be a Banach space.

- The closed balls in X^{\prime} are weak*ly compact (Banach-Alaoglu)
- If X is separable, then the closed balls in X^{\prime} are also weak* ly sequentially compact, which means that every bounded sequence has a weak ${ }^{*} l y$ convergent subsequence.

Theorem 93 Let X be a Banach space. The following statements are equivalent:

1. X is reflexive
2. The closed balls in X are weakly compact
3. The closed balls in X are weakly sequentially compact, which means that every bounded sequence has a weakly convergent subsequence

6.1 some application

Theorem 94 Let X be reflexive, and let $f: X \rightarrow \mathbb{R}$ be a continuous convex function such that $\lim _{\|x\| \rightarrow \infty} f(x)=\infty$. Then, f attains its minimum.

7 Hilbert spaces

Definition 95 (Inner product) An inner product in a vector space H is a function $\langle\cdot, \cdot\rangle$: $H \times H \rightarrow \mathbb{K}$ such that

1. $\langle x, x\rangle>0$ for every $x \neq 0$
2. $\langle x, y\rangle=\overline{\langle y, x\rangle}$ for each $x, y \in H$
3. $\langle\alpha x+y, z\rangle=\alpha\langle x, z\rangle+\langle y, z\rangle$ for each $\alpha \in \mathbb{K}$ and $x, y, z \in H$

Remark: $\langle x, \alpha y+z\rangle=\bar{\alpha}\langle x, y\rangle+\langle x, z\rangle$ for each $\alpha \in \mathbb{K}$ and $x, y, z \in H$
Definition 96 The function $\|\cdot\|: H \rightarrow \mathbb{R}$, defined by $\|x\|=\sqrt{\langle x, x\rangle}$, is a norm on H.
Proposition 97 For each $x, y \in H$ we have

- The Cauchy-Schwarz inequality: $|\langle x, y\rangle| \leq\|x\|\|y\|$
- Triangle inequality: $\|x+y\| \leq\|x\|+\|y\|$

Definition 98 Given $y \in H$, define a function $L_{y}: H \rightarrow \mathbb{K}$ by $L_{y}(h)=\langle h, y\rangle$
Proposition 99 The function $\mathcal{L}: H \rightarrow H^{*}$, defined by $\mathcal{L}(y)=L_{y}$, is an isometry
Proposition 100 Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be sequences in H. If $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, then

$$
\lim _{n \rightarrow \infty}\left\langle x_{n}, y_{n}\right\rangle=\langle x, y\rangle
$$

Definition 101 We say x, y are orthogonal, and write $x \perp y$, if $\langle x, y\rangle=0$
Theorem 102 (Pythagoras) If $x \perp y$, then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$

Proposition 103 (Parallelogram identity) For each $x, y \in H$, we have $\|x+y\|^{2}+\| x-$ $y \|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$

Definition 104 If $\|x\|=\sqrt{\langle x, x\rangle}$ for all $x \in X$, we say that the norm $\|\cdot\|$ is associated to the inner product $\langle\cdot, \cdot\rangle$

Definition 105 (Hilbert space) A Hilbert space is a Banach space, whose norm is associated to an inner product

7.1 Orthogonal projection

Proposition 106 Let K be a nonempty, closed and convex subset of H and let $x \in H$. Then, there exists a unique $y^{*} \in K$ such that

$$
\left\|x-y^{*}\right\|=\min _{y \in K}\|x-y\|
$$

Moreover, it is the only element of K such that

$$
\left\langle x-y^{*}, y-y^{*}\right\rangle \leq 0 \quad \forall y \in K
$$

Remark: The point y^{*} is the projection of x onto K and will be denoted by $P_{K}(x)$
Proposition 107 Let K be a nonempty, closed and convex subset of H. The function $x \mapsto$ $P_{K}(x)$ is non-expansive

Proposition 108 If M is closed subspace of H, then $x-P_{M}(x) \perp M$ for each $x \in H$

7.2 Representation Theorem

Recall that each $y \in H$ defines $L_{y} \in H^{*}$ by $L_{y}(h)=\langle h, y\rangle$, moreover $\left\|L_{y}\right\|_{*}=\|y\|$
Theorem 109 (Riesz-Frechet) For each $L \in H^{*}$, there is a unique $y_{L} \in H$ such that

$$
L(h)=\left\langle y_{L}, h\right\rangle
$$

for each $h \in H$. Therefore, the function $L \mapsto y_{L}$ is an isometric isomorphism.
Corollary 110 The inner product $\langle\cdot, \cdot\rangle_{*}: H^{*} \times H^{*} \rightarrow \mathbb{K}$, defined by

$$
\left\langle L_{1}, L_{2}\right\rangle_{*}=L_{1}\left(y_{L_{2}}\right)=\left\langle y_{L_{1}}, y_{L_{2}}\right\rangle
$$

turns H^{*} into a Hilbert space, which is isometrically isomorphic to H. The norm associated with $\langle\cdot, \cdot\rangle_{*}$ is precisely $\|\cdot\|_{*}$

Corollary 111 Hilbert spaces are reflexive
Remark: A sequence $\left(x_{n}\right)$ on a Hilbert space H converges weakly to $x \in H$ if, and only if, $\lim _{n \rightarrow \infty}\left\langle x_{n}-x, y\right\rangle=0$ for all $y \in H$

Proposition 112 A sequence in $\left(x_{n}\right)$ converges strongly to x if, and only if, it converges weakly to x and $\lim _{n \rightarrow \infty} \sup \left\|x_{n}\right\| \leq\|x\|$

7.3 Orthonormalization

Definition 113 (Orthonormal sets) A set $\left\{e_{i}\right\}_{i \in I}$ in a linear space H with an inner product is orthonormal if

- $\left\|e_{i}\right\|=1$ for all $i \in I$; and
- $\left\langle e_{i}, e_{j}\right\rangle=0$, whenever $i \neq j$

Remark: Every finite subset of an orthonormal set is linearly independent
Proposition 114 Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be an orthonormal set in a linear space H with an inner product, and let $V=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}$. Then, for every $x \in H$

$$
P_{V}(x)=\sum_{i=1}^{n}\left\langle x, e_{i}\right\rangle e_{i}
$$

Proposition 115 (Gram-Schmidt) Given a linearly independent set $\left\{a_{1}, \ldots, a_{n}\right\}$ in a linear space H with an inner product, there is an orthonormal set $\left\{e_{1}, \ldots, e_{n}\right\}$ such that

$$
\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=\operatorname{span}\left\{a_{1}, \ldots, a_{k}\right\}
$$

for all $k \in\{1, \ldots, n\}$
Procedure: (also for the proof)

1. Define

$$
e_{1}=\frac{a_{1}}{\left\|a_{1}\right\|} \Rightarrow\left\|e_{1}\right\|=1
$$

note that if $n=1$, then the Gram-Schmidt is indeed true, $\operatorname{span}\left\{e_{1}\right\}=\operatorname{span}\left\{a_{1}\right\}$.
2. if $n>1$, then define recursively

$$
e_{n+1}=\frac{b_{n+1}}{\left\|b_{n+1}\right\|}, \quad b_{n+1}=a_{n+1}-P_{V_{n}}\left(a_{n+1}\right)
$$

where $V_{n}=\operatorname{span}\left\{e_{1}, \ldots, e_{n}\right\}=\operatorname{span}\left\{a_{1}, \ldots, a_{n}\right\}$
3. The vectors $\left\{e_{1}, \ldots, e_{n+1}\right\}$ are orthonormal and $\operatorname{span}\left\{e_{1}, \ldots, e_{n+1}\right\}=\operatorname{span}\left\{a_{1}, \ldots, a_{n+1}\right\}$

Proposition 116 Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal set in a linear space H with an inner product. Then, for every $x \in H$,

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

Proposition 117 Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal set in Hilbert space H. The series $\sum_{i=1}^{\infty} \lambda_{i} e_{i}$ is convergent if, and only if, $\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{2}<\infty$. In such case,

$$
\left\|\sum_{i=1}^{\infty} \lambda_{i} e_{i}\right\|^{2}=\sum_{i=1}^{\infty}\left|\lambda_{i}\right|^{2}
$$

Definition 118 An orthonormal set $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is an orthonormal basis for a Hilbert space H if

$$
\overline{\operatorname{span}}\left\{e_{i}\right\}_{i \in \mathbb{N}}=H
$$

Theorem 119 A Hilbert space is separable if, and only if, it has an orthonormal basis

Theorem 120 The following statements about orthonormal set $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ in a Hilbert space H are equivalent:

1. $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is an orthonormal basis for H
2. $\left\{e_{i}\right\}_{i \in \mathbb{N}}^{\perp}=\{0\}$
3. For each $x \in H, \sum_{i=1}^{\infty}\left\langle x, e_{i}\right\rangle e_{i}=x$
4. For each $x \in H, \sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2}=\|x\|^{2}$

8 Adjoint operators

Definition 121 Let X and Y be Hilbert spaces, and let $T \in B(X, Y)$. The adjoint of T is the bounded linear operator $T^{*} \in B(Y, X)$ satisfying

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle
$$

for all $x \in X$ and $y \in Y$

Theorem 122 The adjoint of L is well defined, unique, and has the following properties:

1. $\left(T^{*}\right)^{*}=T$
2. $\left\|T^{*}\right\|=\|T\|$
3. $\left\|T^{*} T\right\|=\|T\|^{2}$

Remark: If T is a matrix, then $T^{*}=\bar{T}^{t}$

Proposition 123 Let X, Y and Z be Hilbert spaces. We have the following

- If $T, S \in B(X, Y)$ and $\lambda, \mu \in \mathbb{K}$, then $(\lambda T+\mu S)^{*}=\bar{\lambda} T^{*}+\bar{\mu} S^{*}$
- If $T \in B(X, Y)$ and $S \in B(Y, Z)$, then $(S T)^{*}=T^{*} S^{*}$

Proposition 124 Let T be invertible. Then, T^{*} is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$
Lemma 125 For $T \in B(X, Y)$ and $\lambda \in \mathbb{K}$ we have

$$
\begin{aligned}
(\operatorname{ran}(T-\lambda))^{\perp} & =\operatorname{ker}\left(T^{*}-\bar{\lambda}\right) \subset Y \\
\left(\operatorname{ran}\left(T^{*}-\bar{\lambda}\right)\right)^{\perp} & =\operatorname{ker}(T-\lambda) \subset X
\end{aligned}
$$

Corollary 126 Given $T \in B(X)$ and $\lambda \in \mathbb{K}$, we have the following decompositions:

$$
\begin{aligned}
& X=\operatorname{ker}\left(T^{*}-\bar{\lambda}\right) \oplus \overline{\operatorname{ran}}(T-\lambda) \\
& X=\operatorname{ker}(T-\lambda) \oplus \overline{\operatorname{ran}}\left(T^{*}-\bar{\lambda}\right)
\end{aligned}
$$

where \oplus denotes a direct sum of orthogonal closed subspaces.

Definition 127 Let X be a Hilbert space. An operator $T \in B(X)$ is selfadjoint if $T^{*}=T$.

Definition 128 Let X be a Hilbert space. An operator $T \in B(X)$ is normal if $T T^{*}=T^{*} T$

Proposition 129 Let X be a Hilbert space.

- If T is selfadjoint, it is normal
- If $T \in B(X)$ is normal, then
$-\left\|T^{*} x\right\|=\|T x\|$ for all $x \in X$
$-\operatorname{ker}(T-\lambda)=\operatorname{ker}\left(T^{*}-\bar{\lambda}\right)$ for all $\lambda \in \mathbb{K}$

Definition 130 Let X be a Hilbert space. An operator $P \in B(X)$ is an orthogonal projection if:

- $P^{2}=P$
- $\operatorname{ker} P \perp \operatorname{ran} P$

Proposition 131 A projection P in a Hilbert space H is orthogonal if, and only if, it is selfadjoint

9 Eigenvalues, Eigenvectors of linear operators

Definition 132 Let X be a Banach space, and let $T \in B(X)$. A scalar $\lambda \in \mathbb{K}$ is an eigenvalue of T if there is $x \neq 0$ such that

$$
T x=\lambda x
$$

The space $\operatorname{ker}(T-\lambda)$ is the associated eigenspace, and its nonzero elements are the eigenvectors of T

Proposition 133λ is an eigenvalue of T if, and only if, $\bar{\lambda}$ is an eigenvalue of T^{*}.
Proposition 134 If H is a Hilbert space and $T \in B(H)$ is normal, then the eigenspaces corresponding to distinct eigenvalues are orthogonal to each other.

Definition 135 Let X be a Banach space and let $T \in B(X)$. The resolvent set of T is

$$
\rho(T)=\left\{\lambda \in \mathbb{K}:(T-\lambda)^{-1} \in B(X)\right\}
$$

The resolvent operator of T with index $\lambda \in \rho(T)$ is $R(\lambda)=(T-\lambda)^{-1}$

Definition 136 Let X be a Banach space and let $T \in B(X)$. The spectrum of T is $\sigma(T)=$ $\mathbb{K} \backslash \rho(T)$

Remark: $\rho\left(T^{*}\right)=\overline{\rho(T)}$ and $\sigma\left(T^{*}\right)=\overline{\sigma(T)}$
Proposition 137 Let X be a Banach space, and let $T \in B(X)$. If $\lambda \in \sigma(T)$, then $|\lambda| \leq\|T\|$. In turn, if $|\lambda|>\|T\|$, then $\lambda \in \rho(T)$ and

$$
R(\lambda)=-\sum_{n=0}^{\infty} \frac{T^{n}}{\lambda^{n+1}}
$$

Proposition 138 Let H be a Hilbert space, and let $T \in B(H)$ be normal. Then, $\lambda \in \rho(T)$ if, and only if, there is $c>0$ such that

$$
\|(T-\lambda) x\| \geq c\|x\|
$$

for all $x \in H$
As a consequence, $\lambda \in \sigma(T)$ if, and only if, there is a sequence $\left(x_{n}\right)$ such that $\left\|x_{n}\right\|=1$ for all n, and $(T-\lambda) x_{n} \rightarrow 0$

10 Compact operators

Corollary 139 Let X be a Banach space, and let $T \in B(X)$. Then $\rho(T)$ is open and $\sigma(T)$ is closed.

Definition 140 Let X and Y be Banach spaces. A linear operator $T: X \rightarrow Y$ is compact if $\overline{T(B)}$ is compact whenever $B \subset X$ is bounded

Proposition $141 T: X \rightarrow Y$ is compact if, and only if, for every bounded sequence $\left(x_{n}\right)$, the sequence $\left(T x_{n}\right)$ has a convergent subsequence

Proposition 142 Compact operators are bounded

Proposition 143 Every bounded linear operator with finite rank is compact

Definition 144 Given X and Y Banach, we denote the space of all compact operators from X to Y by $\mathcal{K}(X, Y)$

Proposition $145 \mathcal{K}(X, Y)$ is closed in $B(X, Y)$: Limits of compact operators are compact
Theorem 146 Let X be a Banach space, and let $T \in \mathcal{K}(X)$

1. For each $\epsilon>0$, the number of eigenvalues λ of T with $|\lambda| \geq \epsilon$ is finite. In particular, T has countably many eigenvalues
2. if $\lambda \neq 0$ is an eigenvalue of T, then $\operatorname{dim}(\operatorname{ker}(T-\lambda))<\infty$
3. If $\operatorname{dim} X=\infty$, then $0 \in \sigma(T)$

10.1 The spectral theorem for compact selfadjoint operators

Proposition 147 Let H be a complex Hilbert space, and let $T: H \rightarrow H$ be bounded. Then, T is selfadjoint if, and only if, $\langle T x, x\rangle \in \mathbb{R}$ for all $x \in H$. As a consequence, all eigenvalues of selfadjoint operator are real

Definition 148 Let H be Hilbert space. A bounded linear operator $T: H \rightarrow H$ is nonnegative if $\langle T x, x\rangle \geq 0$ for all $x \in H$. We shall write $T \geq 0$

Proposition 149 Let $T \geq 0$

1. T is selfadjoint
2. $\|T x\|^{2} \leq\|T\|\langle T x, x\rangle$ for all $x \in H$

Lemma 150 Let H be a Hilbert space and let $T: H \rightarrow H$ be bounded and selfadjoint. Define

$$
a:=\inf _{\|x\|=1}\langle T x, x\rangle \quad \text { and } \quad b:=\sup _{\|x\|=1}\langle T x, x\rangle
$$

we have the following

1. $T-a \geq 0$ and $b-T \geq 0$
2. $\sigma(T) \subset[a, b]$, and $a, b \in \sigma(T)$
3. $\|T\|=\sup _{\|x\|=1}|\langle T x, x\rangle|=\max \{|a|,|b|\}$

Proposition 151 Let H be a Hilbert space, and let $T: H \rightarrow H$ be a compact and selfadjoint. Then, either $-\|T\|$ or $\|T\|$ is an eigenvalue of T

Corollary 152 If $\sigma(T)=\{0\}$, then $T \equiv 0$
Theorem 153 (The spectral theorem) Let H be a separable Hilbert space, and let T : $H \rightarrow H$ be compact and selfadjoint. Then, there is an orthonormal basis of H composed of eigenvectors of T. More precisely, there exist countably many orthonormal eigenvectors $\left(e_{n}\right)_{n \in \mathcal{N}}$, corresponding to real eigenvalues $\left(\lambda_{n}\right)_{n \in \mathcal{N}}$, such that

$$
T x=\sum_{n \in \mathcal{N}} \lambda_{n}\left\langle x, e_{n}\right\rangle e_{n}
$$

for all $x \in H$. If $\operatorname{dim}(H)=\infty$, then $\mathcal{N}=\mathbb{N}$ and $\lim _{n \rightarrow \infty} \lambda_{n}=0$

